首页> 外文期刊>Signal processing >Sparse graphical representation based discriminant analysis for heterogeneous face recognition
【24h】

Sparse graphical representation based discriminant analysis for heterogeneous face recognition

机译:基于稀疏图形表示的判别分析用于异构人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Face images captured in heterogeneous environments, e.g., sketches generated by the artists or composite generation software, photos taken by common cameras and infrared images captured by corresponding infrared imaging devices, are usually subject to large texture (i.e., style) differences. This results in heavily degraded performance of conventional face recognition methods directly applied on heterogeneous face images. In this paper, we propose a novel sparse graphical representation based discriminant analysis (SGR-DA) approach to address aforementioned cross-modality face recognition scenarios. An adaptive sparse graphical representation scheme is designed to represent face images from different modalities, where a Markov networks model is constructed to generate adaptive sparse vectors. To handle the complex facial structure and further improve the discriminability, a spatial partition-based discriminant analysis framework is presented to refine the adaptive sparse vectors for face matching. We conducted experiments on six commonly used heterogeneous face datasets and experimental comparison with both traditional and deep learning based approaches illustrated the superiority of our proposed SGR-DA. (C) 2018 Elsevier B.V. All rights reserved.
机译:在异构环境中捕获的面部图像,例如由艺术家或合成生成软件生成的草图,由普通相机拍摄的照片以及由相应的红外成像设备捕获的红外图像,通常会遇到较大的纹理(即样式)差异。这导致直接应用于异类面部图像的常规面部识别方法的性能大大降低。在本文中,我们提出了一种新颖的基于稀疏图形表示的判别分析(SGR-DA)方法,以解决上述跨模态人脸识别场景。设计了一种自适应稀疏图形表示方案,以表示来自不同模态的面部图像,其中构造了马尔可夫网络模型以生成自适应稀疏矢量。为了处理复杂的面部结构并进一步提高可识别性,提出了一种基于空间分区的判别分析框架,以细化用于面部匹配的自适应稀疏矢量。我们对六个常用的异类脸部数据集进行了实验,并与传统方法和基于深度学习的方法进行了实验比较,证明了我们提出的SGR-DA的优越性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号