首页> 外文期刊>Signal processing >Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization
【24h】

Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization

机译:基于解耦原子范数最小化的高效二维线谱估计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an efficient optimization technique for gridless 2-D line spectrum estimation, named decoupled atomic norm minimization (D-ANM). The framework of atomic norm minimization (ANM) is considered, which has been successfully applied in 1-D problems to allow super-resolution frequency estimation for correlated sources even when the number of snapshots is highly limited. The state-of-the-art 2-D ANM approach vectorizes the 2-D measurements to their 1-D equivalence, which incurs huge computational cost and may become too costly for practical applications. We develop a novel decoupled approach of 2-D ANM via semi-definite programming (SDP), which introduces a new matrix-form atom set to naturally decouple the joint observations in both dimensions without loss of optimality. Accordingly, the original large-scale 2-D problem is equivalently reformulated via two decoupled one-level Toeplitz matrices, which can be solved by simple 1-D frequency estimation with pairing. Compared with the conventional vectorized approach, the proposed D-ANM technique reduces the computational complexity by several orders of magnitude with respect to the problem size, at no loss of optimality. It also retains the benefits of ANM in terms of precise signal recovery, small number of required measurements, and robustness to source correlation. The complexity benefits are particularly attractive for large-scale antenna systems such as massive MIMO, radar signal processing and radio astronomy. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种用于无网格二维线谱估计的有效优化技术,称为去耦原子范数最小化(D-ANM)。考虑了原子范数最小化(ANM)框架,该框架已成功应用于一维问题,即使快照数量非常有限,也可以对相关源进行超分辨率频率估计。最新的2-D ANM方法将2-D测量矢量化为一维等效项,这会产生巨大的计算成本,并且对于实际应用可能会变得过于昂贵。我们通过半定性编程(SDP)开发了一种新颖的二维ANM解耦方法,该方法引入了一种新的矩阵形式原子集,可以在不丧失最优性的情况下自然地在两个维度上解耦联合观测。因此,可以通过两个解耦的一级Toeplitz矩阵等效地重新构造原始的大规模2-D问题,这可以通过简单的带有配对的1-D频率估计来解决。与传统的矢量化方法相比,所提出的D-ANM技术相对于问题大小将计算复杂度降低了几个数量级,而没有损失任何最优性。它还保留了ANM的优势,包括精确的信号恢复,所需测量的数量少以及与源相关的鲁棒性。对于大规模天线系统(例如大规模MIMO,雷达信号处理和射电天文学),复杂性优势尤其具有吸引力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号