首页> 外文期刊>Signal processing >Decimations of intrinsic mode functions via semi-infinite programming based optimal adaptive nonuniform filter bank design approach
【24h】

Decimations of intrinsic mode functions via semi-infinite programming based optimal adaptive nonuniform filter bank design approach

机译:通过基于半无限编程的最优自适应非均匀滤波器组设计方法抽取固有模式函数

获取原文
获取原文并翻译 | 示例

摘要

A signal can be represented as the sum of the intrinsic mode functions via performing the empirical mode decomposition. For the discrete time signals, the lengths of the intrinsic mode functions are equal to the lengths of the input signals. As there is usually more than one intrinsic mode function, the total numbers of discrete points of all the intrinsic mode functions are usually more than the lengths of the input signals. In other words, the empirical mode decomposition is an oversampled representation. For some applications such as the compression application, the oversampled representation is not preferred. Therefore, this paper proposes an optimal adaptive nonuniform filter bank design approach for performing the decimations on the intrinsic mode functions. In particular, the passbands of the intrinsic mode functions are estimated based on an adaptive gradient algorithm. Then, the intrinsic mode functions are nonuniformly downsampled and upsampled with the sampling integers derived based on their estimated passbands. Next, a bank of filters is employed to reconstruct the original signal. Here, the passbands of the filters are also derived based on those of the intrinsic mode functions. After that, the nonuniform filter bank design problem is formulated as a semi-infinite programming problem such that the total ripple energies of all the filters are minimized subject to the specifications on the absolute maximum values of both the real part and the imaginary part of the reconstruction error. The semi-infinite programming problem is approximated by a semi-definite programming problem. Computer numerical simulation results show that our proposed system could achieve a very small reconstruction error at a very small oversampling ratio. (C) 2019 Elsevier B.V. All rights reserved.
机译:通过执行经验模式分解,可以将信号表示为固有模式函数之和。对于离散时间信号,本征模式函数的长度等于输入信号的长度。由于通常存在一个以上的本征模式函数,因此所有本征模式函数的离散点总数通常大于输入信号的长度。换句话说,经验模式分解是一个过采样的表示。对于某些应用程序(例如压缩应用程序),过采样表示不是首选。因此,本文提出了一种最优的自适应非均匀滤波器组设计方法,用于对固有模式函数进行抽取。特别地,基于自适应梯度算法来估计本征模式函数的通带。然后,固有模式函数会根据基于其估计通带得出的采样整数进行不均匀的下采样和上采样。接下来,使用一组滤波器来重建原始信号。在此,滤波器的通带也基于固有模式函数的通带导出。此后,将非均匀滤波器组设计问题公式化为半无限编程问题,以使所有滤波器的总纹波能量最小化,这取决于关于滤波器实部和虚部的绝对最大值的规格。重建错误。半无限编程问题由半定规划问题近似。计算机数值模拟结果表明,我们提出的系统可以在非常小的过采样率下实现非常小的重构误差。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号