首页> 外文期刊>Signal processing >State estimation under non-Gaussian Levy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach
【24h】

State estimation under non-Gaussian Levy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach

机译:非高斯征税和时间相关的附加传感器噪声下的状态估计:改进的Tobit Kalman滤波方法

获取原文
获取原文并翻译 | 示例

摘要

The Tobit Kalman filter (TKF) is a powerful tool in solving the state estimation problem for linear systems with censored measurements. This paper is concerned with the Tobit Kalman filtering problem for discrete time-varying systems subject to non-Gaussian Levy and time-correlated additive measurement noises. By referencing to the measurement differencing method, the time-correlation of the measurement noises is transformed into the cross-correlation between the equivalent measurement noise and the process noise. Then, by resorting to the Levy-Ito theorem, the non-Gaussian Levy measurement noises are transformed into equivalent Gaussian noises with unknown covariances. Based on the transformed Gaussian measurement noises, a modified recursive TKF is designed where the unknown noise covariances are carefully calculated. Simulation results are provided to illustrate the effectiveness of the proposed filter. (C) 2018 Elsevier B.V. All rights reserved.
机译:Tobit Kalman滤波器(TKF)是解决带有删节测量的线性系统的状态估计问题的有力工具。本文涉及离散时变系统的非高斯征费和与时间相关的加性测量噪声的Tobit Kalman滤波问题。通过参考测量差分方法,将测量噪声的时间相关转换为等效测量噪声与过程噪声之间的互相关。然后,通过使用Levy-Ito定理,将非高斯Levy测量噪声转换为具有未知协方差的等效高斯噪声。基于变换后的高斯测量噪声,设计了一种改进的递归TKF,其中仔细计算了未知噪声的协方差。提供仿真结果以说明所提出的滤波器的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号