首页> 外文期刊>Signal processing >Aperiodic geometry design for DOA estimation of broadband sources using compressive sensing
【24h】

Aperiodic geometry design for DOA estimation of broadband sources using compressive sensing

机译:使用压缩感测的宽带源DOA估计的非周期性几何设计

获取原文
获取原文并翻译 | 示例

摘要

Antenna arrays used in Compressive Sensing (CS) based algorithms are generated randomly to minimize mutual coherence. This scheme, although good for compressive sensing, suffers from practical limitations. Random sampling of antenna aperture is impractical. Rectangular arrays, although uniform, suffer from poor performance when used in CS algorithms. It is particularly ill suited to algorithms designed to estimate DOA of broadband sources, because of the introduction of grating lobes. Aperiodic arrays offer some advantages in the CS scenario. The aperiodic geometries based on Penrose and Danzer tiling are inherently sparse as they utilize a fewer number of sensors as compared to the regular geometries. Based on minimization of mutual coherence, this paper develops a novel optimization scheme, that can generate sparse array geometries offering improved performance for CS algorithms. This paper demonstrates that it is possible to design aperiodic arrays that perform much better than rectangular arrays by using a simple disturbance optimization scheme, that can be applied to other aperiodic geometries as well. A greedy MMV based compressive sensing algorithm, SOMP, is used to evaluate the performance of a number of geometries. Two geometries have been identified that perform better than all other geometries studied, including the random-sampling based geometries. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于压缩感知(CS)的算法中使用的天线阵列是随机生成的,以使相互相干性最小。该方案尽管有利于压缩感测,但是受到实际限制。天线孔径的随机采样是不切实际的。矩形阵列虽然均匀,但在CS算法中使用时性能较差。由于引入了光栅波瓣,因此特别不适用于设计用于估计宽带源DOA的算法。非周期阵列在CS场景中提供了一些优势。基于Penrose和Danzer平铺的非周期性几何图形本质上比较稀疏,因为与常规几何图形相比,它们使用的传感器数量更少。在最小化互相关性的基础上,本文开发了一种新颖的优化方案,该方案可以生成稀疏阵列几何形状,从而为CS算法提供改进的性能。本文证明,通过使用简单的干扰优化方案,可以设计性能比矩形阵列好得多的非周期性阵列,该方案也可以应用于其他非周期性几何形状。基于贪婪MMV的压缩感测算法SOMP用于评估许多几何的性能。已经确定了两个比所有其他几何图形都性能更好的几何图形,包括基于随机采样的几何图形。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号