首页> 外文期刊>Signal processing >CFAR subspace detectors with multiple observations in system-dependent clutter background
【24h】

CFAR subspace detectors with multiple observations in system-dependent clutter background

机译:在依赖于系统的杂波背景下具有多个观测值的CFAR子空间探测器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the target detection problem is studied in system-dependent clutter (SDC) background where the clutter and signal of interest (SOI) propagate in the same channels. The received data model applied here, named as multiple observations data model, consists of multiple observations (primary data) and a set of secondary data (free of SOI). Three detectors with the constant false alarm rate feature are designed by using the generalized likelihood ratio, Rao and Wald tests. Interesting findings are: (1) Theoretical derivation proves that these three detectors are equivalent. (2) The primary data size D and the secondary data size K have nearly the same contribution to computational complexity and the probability of detection (PD) is more sensitive to D. (3) For desired probability of false alarm and PD, proper D and K can be selected based on the approximately estimated noncentrality parameters involved in probability density functions. A selection procedure is provided. (4) Based on those estimated noncentrality parameters, it is demonstrated that the relationship between PD and clutter-to-noise ratio is determined by the system response matrix with respect to clutter and SOI. Simulation results validate that the designed new detectors outperform other classic detectors in SDC background. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,在系统相关杂波(SDC)背景下研究目标检测问题,其中杂波和目标信号(SOI)在同一通道中传播。此处应用的接收数据模型称为多观察数据模型,它由多个观察(主要数据)和一组辅助数据(不含SOI)组成。通过使用广义似然比,Rao和Wald测试设计了三个具有恒定误报率功能的检测器。有趣的发现是:(1)理论推导证明这三个探测器是等效的。 (2)主要数据大小D和次要数据大小K对计算复杂度的贡献几乎相同,并且检测概率(PD)对D更为敏感。(3)对于期望的错误警报和PD概率,适当的D可以基于概率密度函数中涉及的近似估计的非中心性参数来选择K和K。提供选择过程。 (4)基于这些估计的非中心性参数,证明PD和杂波噪声比之间的关系由系统响应矩阵决定,即关于杂波和SOI。仿真结果验证了所设计的新型探测器在SDC背景下的性能优于其他经典探测器。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号