首页> 外文期刊>Signal Processing, IET >Hilbert–Huang–Hurst-based non-linear acoustic feature vector for emotion classification with stochastic models and learning systems
【24h】

Hilbert–Huang–Hurst-based non-linear acoustic feature vector for emotion classification with stochastic models and learning systems

机译:基于Hilbert-Huang-Hurst的非线性声学特征向量,具有随机模型和学习系统的情感分类

获取原文
获取原文并翻译 | 示例

摘要

This study presents a widespread analysis of affective vocal expression classification systems. In this study, the Hilbert-Huang-Hurst coefficient (HHHC) vector is proposed as a non-linear vocal source feature to represent the emotional states according to their effects on the speech production mechanism. Affective states are highlighted by the empirical mode decomposition-based method, which exploits the non-stationarity of the acoustic variations. Hurst coefficients are then estimated from the decomposition modes to form the feature vector. Additionally, a vector of the index of non-stationarity (INS) is introduced as dynamic information to the HHHC. The proposed feature vector is evaluated in speech emotion classification experiments with three databases in German and English languages. Three state-of-the-art acoustic feature vectors are adopted as a baseline. The alpha-integrated Gaussian mixture model (alpha-GMM) is also introduced for the emotion representation and classification. Its performance is compared to competing for stochastic and machine learning classifiers. Results demonstrate that the HHHC leads to significant classification improvement when compared to the baseline acoustic feature vectors. Moreover, results also show that the alpha-GMM outperforms the competing classification methods. Finally, the complementarity aspects of HHHC and INS are also evaluated for the GeMAPS and eGeMAPS feature sets.
机译:本研究提出了对情感声乐表达分类系统的广泛分析。在这项研究中,提出了希尔伯特 - 黄仓仓系数(HHHC)向量作为非线性声道源特征,以代表情绪状态根据它们对语音生产机制的影响。基于经验模式分解的方法突出显示了情感状态,该方法利用了声学变化的非实用性。然后从分解模式估计HURST系数以形成特征向量。另外,向HHHC引入非实用性(INS)指数的向量作为动态信息。所提出的特征向量在语音情绪分类实验中评估了德语和英语的三个数据库。采用三个最先进的声学特征向量作为基线。还引入了α-集成的高斯混合模型(Alpha-GMM)用于情绪表示和分类。它的性能与随机和机器学习分类器的竞争相比。结果表明,与基线声学特征向量相比,HHHC导致显着的分类改进。此外,结果还表明,α-GMM优于竞争的分类方法。最后,还评估了HHHC和INS的互补方面,用于Gemaps和EGEMAPS特征集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号