首页> 外文期刊>Signal Processing, IET >Multi-kernel-based random vector functional link network with decomposed features for epileptic EEG signal classification
【24h】

Multi-kernel-based random vector functional link network with decomposed features for epileptic EEG signal classification

机译:基于多核的随机向量功能链接网络,具有癫痫eeg信号分类的分解特征

获取原文
获取原文并翻译 | 示例

摘要

This study proposes an improved hybrid model built with empirical mode decomposition (EMD) features combined with weighted multi-kernel random vector functional link network (WMKRVFLN) where the kernel parameters are optimised with an efficient optimisation algorithm known as water cycle algorithm (WCA) for diagnosis and classification of epileptic electroencephalogram (EEG) signals. The proposed model with optimisation is known as WCA-EMD-WMKRVFLN. The tanh and wavelet kernel functions are contributing together to the effectiveness of the proposed model. The features generated from EMD in terms of intrinsic mode functions (IMFs) are modulated to find important statistical and entropy based features and these features in a reduced form are employed as inputs to the model to classify epileptic EEG signals. The presented approach is evaluated in terms of percentage correct classification accuracy (ACC), specificity and sensitivity using two datasets and is compared with different classifiers and state-of-the-art techniques. The highest accuracies of 99.69% (five-class) and 100% (three-class) achieved using the Bonn-University dataset and 99.0% ACC (two-class) achieved using the Bern-Barcelona dataset. The achieved results report that the presented approach is a promising approach for EEG signal classification and is superior to several state-of-the-art techniques and is highly comparable to many such techniques.
机译:本研究提出了一种具有经验模式分解(EMD)的改进的混合模型,其特征与加权多核随机向量功能链路网络(WMKRVFLN)组合,其中内核参数通过称为水循环算法(WCA)的有效优化算法进行了优化癫痫脑电图(EEG)信号的诊断和分类。具有优化的提出模型称为WCA-EMD-WMKRVFLN。 Tanh和小波核心功能正在贡献所提出的模型的有效性。从EMD在内部模式功能(IMF)方面产生的特征被调制以找到重要的统计和基于熵的特征,并且以缩小形式的这些特征被用作模型的输入来分类癫痫脑电图信号。通过使用两个数据集的百分比正确的分类精度(ACC),特异性和灵敏度来评估所提出的方法,并与不同的分类器和最先进的技术进行比较。使用Bonn-Barcelona数据集实现的Bonn-BarcateSet和99.0%ACC(两班)实现了99.69%(五类)和100%(三类)的最高精度。达到的结果报告说,该方法是eEG信号分类的有希望的方法,并且优于几种最先进的技术,并且与许多这样的技术具有高度比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号