机译:基于多核的随机向量功能链接网络,具有癫痫eeg信号分类的分解特征
Siksha O Anusandhan Univ Dept Elect & Commun Engn Bhubaneswar 751030 Odisha India;
Siksha O Anusandhan Univ Multidisciplinary Res Cell Bhubaneswar 751030 Odisha India;
Siksha O Anusandhan Univ Multidisciplinary Res Cell Bhubaneswar 751030 Odisha India;
electroencephalography; image classification; signal classification; support vector machines; entropy; wavelet transforms; medical signal processing; feature extraction; optimisation; epileptic EEG signals; sensitivity; multikernel-based random vector functional link network; decomposed features; epileptic EEG signal classification; improved hybrid model; empirical mode decomposition; multikernel random vector functional link network; kernel parameters; efficient optimisation algorithm; water cycle algorithm; epileptic electroencephalogram signals; WCA-EMD-WMKRVFLN; kernel functions; intrinsic mode functions; important statistical based features; entropy based features;
机译:基于深度短的短期内存的最小方差内核随机向量功能链路网络用于癫痫eeg信号分类
机译:基于非线性和统计特征的EEG小波分解癫痫癫痫发作识别与支持向量机分类
机译:使用VMD进行癫痫发作分类的有效的,误差最小的随机向量功能链接网络
机译:通过时域和频域特征通过人工神经网络对正常和癫痫性脑电信号进行分类
机译:癫痫发作模式和深神经结构对癫痫癫痫发作预测的多种特征分析
机译:基于简单随机抽样和顺序特征选择的癫痫脑电信号分类
机译:基于多核的随机向量功能链接网络,具有癫痫eeg信号分类的分解特征