首页> 外文期刊>Signal Processing, IET >Sleep stages classification from EEG signal based on Stockwell transform
【24h】

Sleep stages classification from EEG signal based on Stockwell transform

机译:基于Stockwell变换的脑电信号睡眠阶段分类

获取原文
获取原文并翻译 | 示例

摘要

Sleep has great effect on physical health and quality of life. Electroencephalogram (EEG) signal is used in studying sleep process and recently, time-frequency transforms are increasingly utilised in EEG signal analysis. This study proposes an efficient method for sleep stages classification based on a time-frequency transform, namely Stockwell transform. In the introduced method, at first, the Stockwell transform is used to map each 30 s epoch of EEG signal into the time-frequency domains, which results in a complex-valued matrix. Then, the frequency domain is divided into different non-overlapping segments, leading to several matrices. After that, entropy features are extracted from the obtained matrices. In order to determine the sleep stage of each epoch, the computed features are applied to classifier. Support vector machine, weighted K-nearest neighbour, and ensemble bagged tree classifiers are considered. The Pz-Oz and Fpz-Cz channels of EEG signal from Sleep-EDF data set and C3-A2 channel from ISRUC-Sleep data set are used in this research. The results indicate that the proposed method outperforms the recently introduced methods.
机译:睡眠对身体健康和生活质量有很大影响。脑电图(EEG)信号用于研究睡眠过程,近来,时频变换越来越多地用于EEG信号分析中。本研究提出了一种基于时频变换的有效睡眠时间分类方法,即斯托克韦尔变换。在引入的方法中,首先,使用Stockwell变换将EEG信号的每30 sep映射到时频域,从而得到复值矩阵。然后,将频域划分为不同的不重叠段,从而产生多个矩阵。之后,从获得的矩阵中提取熵特征。为了确定每个时期的睡眠阶段,将计算出的特征应用于分类器。考虑支持向量机,加权K最近邻和整体袋装树分类器。该研究使用了来自Sleep-EDF数据集的EEG信号的Pz-Oz和Fpz-Cz通道以及来自ISRUC-Sleep数据集的C3-A2通道。结果表明,所提出的方法优于最近提出的方法。

著录项

  • 来源
    《Signal Processing, IET》 |2019年第2期|242-252|共11页
  • 作者单位

    Urmia Univ Dept Elect Engn Orumiyeh Iran;

    Urmia Univ Technol Fac Elect Engn Orumiyeh Iran;

    Urmia Univ Dept Elect Engn Orumiyeh Iran|Sharif Univ Technol Elect Engn Dept ACRI Wireless Res Lab Tehran Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号