首页> 外文期刊>Signal Processing, IET >Approach based on combination of vector neural networks for emitter identification
【24h】

Approach based on combination of vector neural networks for emitter identification

机译:基于矢量神经网络组合的辐射源识别方法

获取原文
获取原文并翻译 | 示例

摘要

To deal with the problem of emitter identification caused by the measurement uncertainty of emitter feature parameters, this study proposes a new identification algorithm based on combination of vector neural networks (CVNN), which is deduced from the backpropagation vector neural network and can realise the non-linear mapping between the interval-value input data and the interval-value output emitter types. The key idea of CVNN is to adopt a combination of multiple multi-input/single-output neural networks to construct an identification system; each of the networks can only realise the identification function between two emitter types. Through quantitative analysis, it can be concluded that the proposed algorithm requires less computational load in the training stage. A number of simulations are presented to demonstrate the identification capability of the CVNN algorithm for emitter signals with and without additive noise. Simulation results show that the proposed algorithm not only has better identification capability, but also is relatively more insensitive to noise.
机译:针对发射器特征参数测量不确定性引起的发射器识别问题,提出了一种基于矢量神经网络(CVNN)组合的识别算法,该算法是从反向传播矢量神经网络推导而来的,可以实现非识别。间隔值输入数据和间隔值输出发射器类型之间的线性映射。 CVNN的关键思想是采用多个多输入/单输出神经网络的组合来构建识别系统。每个网络只能实现两种发射器类型之间的识别功能。通过定量分析,可以得出结论,该算法在训练阶段需要较少的计算量。提出了许多模拟,以证明CVNN算法对具有和不具有加性噪声的发射器信号的识别能力。仿真结果表明,该算法不仅具有较好的识别能力,而且对噪声的敏感性相对较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号