首页> 外文期刊>IEEE Transactions on Antennas and Propagation >A vector neural network for emitter identification
【24h】

A vector neural network for emitter identification

机译:用于发射器识别的矢量神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a three-layer vector neural network (VNN) with a supervised learning algorithm suitable for signal classification in general, and for emitter identification (EID) in particular. The VNN can accept interval-value input data as well as scalar input data. The input features of the EID problems include the radio frequency, pulse width, and pulse repetition interval of a received emitter signal. Since the values of these features vary in interval ranges in accordance with a specific radar emitter, the VNN is proposed to process interval-value data in the EID problem. In the training phase, the interval values of the three features are presented to the input nodes of VNN. A new vector-type backpropagation learning algorithm is derived from an error function defined by the VNN's actual output and the desired output indicating the correct emitter type of the corresponding feature intervals. The algorithm can tune the weights of VNN optimally to approximate the nonlinear mapping between a given training set of feature intervals and the corresponding set of desired emitter types. After training, the VNN can be used to identify the sensed scalar-value features from a real-time received emitter signal. A number of simulations are presented to demonstrate the effectiveness and identification capability of VNN, including the two-EID problem and the multi-EID problem with/without additive noise. The simulated results show that the proposed algorithm cannot only accelerate the convergence speed, but it can help avoid getting stuck in bad local minima and achieve higher classification rate.
机译:本文提出了一种三层向量神经网络(VNN),该网络具有监督学习算法,通常适用于信号分类,尤其适用于发射器识别(EID)。 VNN可以接受间隔值输入数据和标量输入数据。 EID问题的输入特征包括接收到的发射器信号的射频,脉冲宽度和脉冲重复间隔。由于这些特征的值会根据特定的雷达发射器在间隔范围内变化,因此建议使用VNN处理EID问题中的间隔值数据。在训练阶段,将三个特征的间隔值呈现给VNN的输入节点。一种新的矢量型反向传播学习算法是从VNN的实际输出和所需输出(该输出指示相应特征区间的正确发射器类型)定义的误差函数中得出的。该算法可以最佳地调整VNN的权重,以逼近给定的特征间隔训练集与所需的发射体类型的对应集之间的非线性映射。训练后,VNN可用于从实时接收的发射器信号中识别感测到的标量值特征。提出了许多仿真来证明VNN的有效性和识别能力,包括带有/不带有加性噪声的两个EID问题和多EID问题。仿真结果表明,该算法不仅可以加快收敛速度​​,而且可以避免陷入不良的局部极小值,提高分类率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号