首页> 外文期刊>Signal Processing, IET >Unsupervised feature learning via prior information-based similarity metric learning for face verification
【24h】

Unsupervised feature learning via prior information-based similarity metric learning for face verification

机译:通过基于先验信息的相似性度量学习进行人脸验证的无监督特征学习

获取原文
获取原文并翻译 | 示例

摘要

Here, an efficient framework is developed to address the problem of unconstrained face verification. In particular, an unsupervised feature learning method for face image representation and a novel similarity metric model are discussed. First, the authors propose an unsupervised feature learning method with sparse auto-encoder (SAE) based on local descriptor (SAELD). A set of filter operators are learned based on SAE model from local patches, and face descriptors are extracted by applying the set of filter operators to convolve images. This can address the face discriminative representation issue of unconstrained face verification. Then pairwise SAELD descriptors are projected into the weighted subspace. Furthermore, a prior information-based similarity metric learning model is presented, in which the metric matrix is learned by enforcing a regularisation term based on the prior similar and discriminative information. This idea can improve the robustness to intra-personal variations and discrimination to inter-personal variations. Experimental results show that the proposed method has competitive performance compared with several state-of-the-art methods on challenging labelled faces in the wild data set.
机译:这里,开发了一种有效的框架来解决无约束的面部验证的问题。特别地,讨论了用于面部图像表示的无监督特征学习方法和新颖的相似性度量模型。首先,作者提出了一种基于局部描述符(SAELD)的稀疏自动编码器(SAE)的无监督特征学习方法。根据SAE模型从局部补丁中学习出一组滤波器算子,并通过将滤波器算子集应用于卷积图像来提取人脸描述符。这可以解决无约束面部验证的面部区分表示问题。然后将成对的SAELD描述符投影到加权子空间中。此外,提出了一种基于先验信息的相似性度量学习模型,其中,通过基于先验相似和判别信息实施正则项来学习度量矩阵。这个想法可以提高对人际变异的鲁棒性和对人际变异的歧视。实验结果表明,与几种最新方法相比,该方法在野外数据集中具有挑战性的标记面部上具有竞争性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号