首页> 外文期刊>Signal Processing, IET >Process noise identification based particle filter: an efficient method to track highly manoeuvring targets
【24h】

Process noise identification based particle filter: an efficient method to track highly manoeuvring targets

机译:基于过程噪声识别的粒子过滤器:一种跟踪高机动目标的有效方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, a novel method, process noise identification-based particle filter is proposed for tracking highly manoeuvring target. In the proposed method, the equivalent-noise approach is adopted, which converts the problem of manoeuvring target tracking to that of state estimation in the presence of non-stationary process noise with unknown statistics. A novel method for identifying the non-stationary process noise is proposed in the particle filter framework. Compared with the multiple model approaches for manoeuvring target tracking, the proposed method needs to know neither the possible multiple models nor the transition probability matrices. One simple dynamic model is adopted during the whole tracking process. The proposed method is especially suitable for tracking highly manoeuvring target because of its capability of dealing with sample impoverishment, which is a common problem in particle filter and becomes serious when tracking large uncertain dynamics.
机译:在这项研究中,提出了一种新的基于过程噪声识别的粒子滤波方法来跟踪高机动目标。在该方法中,采用了等效噪声方法,该方法在存在统计信息未知的非平稳过程噪声的情况下,将机动目标的跟踪问题转换为状态估计问题。在粒子滤波框架中提出了一种识别非平稳过程噪声的新方法。与用于机动目标跟踪的多模型方法相比,该方法既不需要知道可能的多种模型,也不需要知道过渡概率矩阵。在整个跟踪过程中采用一种简单的动态模型。所提出的方法由于具有处理样品贫乏的能力而特别适合于跟踪高度机动的目标,这是粒子过滤器中的常见问题,并且在跟踪较大的不确定动力学时变得严重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号