首页> 外文期刊>Neurocomputing >Observation noise modeling based particle filter: An efficient algorithm for target tracking in glint noise environment
【24h】

Observation noise modeling based particle filter: An efficient algorithm for target tracking in glint noise environment

机译:基于观察噪声建模的粒子滤波器:在闪烁噪声环境中有效的目标跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel particle filtering algorithm for target tracking in the presence of glint noise based on observation noise modeling is proposed. The algorithm samples particles using the observation likelihood function, the construction of which is converted to a modeling problem of observation noise. Additionally, the Gaussian mixture model is incorporated to approximate the distribution of observation noise at each time instant. In order to derive a recursive form update for the parameters of the Gaussian components, the maxifnum likelihood estimation method is employed, enabling noise to be effectively tracked by fusing the latest observations. The algorithm is then used in simulations of bearings-only tracking problems in a glint noise environment with two types of targets: non-maneuvering and maneuvering. The results of the proposed algorithm are evaluated and compared to several existing filtering algorithms through a series of Monte Carlo simulations. The simulation results demonstrate that the proposed algorithm is more precise, robust, and even has a faster convergence rate than the comparative filters. Lastly, the performance of the proposed filter in situations with different numbers of particles and Gaussian components is explored using the simulation results. (C) 2015 Elsevier B.V. All rights reserved.
机译:提出了一种基于观测噪声模型的闪烁噪声下目标跟踪的新型粒子滤波算法。该算法使用观察似然函数对粒子进行采样,并将其构造转换为观察噪声的建模问题。另外,结合了高斯混合模型以近似估计每个时刻的观察噪声分布。为了获得高斯分量参数的递归形式更新,采用了极大似然估计方法,通过融合最新的观测值可以有效地跟踪噪声。该算法然后用于在具有两种目标类型的闪烁噪声环境中模拟纯轴承跟踪问题:非机动和机动。通过一系列的蒙特卡洛模拟,对提出的算法的结果进行了评估,并与几种现有的滤波算法进行了比较。仿真结果表明,与比较滤波器相比,该算法更加精确,鲁棒,甚至收敛速度更快。最后,利用仿真结果探讨了所提出的滤波器在不同数量的粒子和高斯分量情况下的性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第22期|155-166|共12页
  • 作者单位

    Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Shanxi, Peoples R China|Shanxi Univ, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China;

    Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Shanxi, Peoples R China|Shanxi Univ, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Target tracking; Particle filter; Observation likelihood; Glint noise; Gaussian mixture model;

    机译:目标跟踪;粒子滤波;观测似然度;闪烁噪声;高斯混合模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号