首页> 外文期刊>Signal Processing, IET >Robust speech recognition by using spectral subtraction with noise peak shifting
【24h】

Robust speech recognition by using spectral subtraction with noise peak shifting

机译:通过使用谱峰相减和噪声峰值偏移来实现可靠的语音识别

获取原文
获取原文并翻译 | 示例

摘要

In this study, a novel technique that recovers the temporal structure of speech power spectrum is proposed. The histogram of average speech log power spectrum shows that the contamination of noise leads to the shift of noise peak, which in return degrades the performance of speech recognition systems. A two-step scheme is proposed to weaken the noise effects by first reducing the noise variance and then shifting the noise mean. The proposed algorithm consists of two parts, two-dimensional smoothing and controlled noise subtraction, which leads to the name SNS. The proposed algorithm manages to solve the speech probability distribution function discontinuity problem caused by traditional spectral subtraction series algorithms. In contrast to the clean speech estimation methods, the proposed algorithm does not need a prior speechoise statistical model, which makes it simple but effective. The effectiveness of the proposed filter is tested using the AURORA2 database. Very promising results are obtained, 88.59% for noisy speech (average from signal-to-noise ratio 0–20 dB). Comparison is made against eight state-of-the-art speech recognition algorithms. Overall the proposed algorithm produces significant improvements over the comparison targets.
机译:在这项研究中,提出了一种恢复语音功率谱时间结构的新技术。平均语音对数功率谱的直方图显示,噪声的污染导致噪声峰值的移动,从而降低了语音识别系统的性能。为了降低噪声影响,提出了一种两步法,首先降低噪声方差,然后改变噪声平均值。所提出的算法由两部分组成:二维平滑和受控噪声减法,因此得名SNS。所提出的算法设法解决了传统的频谱相减系列算法引起的语音概率分布函数不连续性问题。与干净的语音估计方法相比,所提出的算法不需要先验的语音/噪声统计模型,这使其简单但有效。使用AURORA2数据库测试了建议的过滤器的有效性。获得了非常有希望的结果,有声语音的88.59%(平均信噪比0-20 dB)。与八种最先进的语音识别算法进行了比较。总体而言,所提出的算法在比较目标上产生了重大改进。

著录项

  • 来源
    《Signal Processing, IET》 |2013年第8期|684-692|共9页
  • 作者

    Dai P.; Soon I.Y.;

  • 作者单位

    School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore, 639798|c|;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号