首页> 外文期刊>Signal Processing, IET >Voicing detection based on adaptive aperiodicity thresholding for speech enhancement in non-stationary noise
【24h】

Voicing detection based on adaptive aperiodicity thresholding for speech enhancement in non-stationary noise

机译:基于自适应非周期性阈值的语音检测,用于非平稳噪声中的语音增强

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors present a novel voicing detection algorithm which employs the well-known aperiodicity measure to detect voiced speech in signals contaminated with non-stationary noise. The method computes a signal-adaptive decision threshold which takes into account the current noise level, enabling voicing detection by direct comparison with the extracted aperiodicity. This adaptive threshold is updated at each frame by making a simple estimate of the current noise power, and thus is adapted to fluctuating noise conditions. Once the aperiodicity is computed, the method only requires a small number of operations, and enables its implementation in challenging devices (such as hearing aids) if an efficient approximation of the difference function is employed to extract the aperiodicity. Evaluation over a database of speech sentences degraded by several types of noise reveals that the proposed voicing classifier is robust against different noises and signal-to-noise ratios. In addition, to evaluate the applicability of the method for speech enhancement, a simple F0-based speech enhancement algorithm integrating the proposed classifier is implemented. The system is shown to achieve competitive results, in terms of objective measures, when compared with other well-known speech enhancement approaches.
机译:在这项研究中,作者提出了一种新颖的语音检测算法,该算法采用众所周知的非周期性测量方法来检测受非平稳噪声污染的信号中的浊音。该方法计算考虑到当前噪声水平的信号自适应决策阈值,从而可以通过与提取的非周期性直接比较来进行语音检测。通过对当前噪声功率进行简单估计,可在每个帧上更新此自适应阈值,因此可适应波动的噪声条件。一旦计算了非周期性,该方法仅需要少量的操作,并且如果采用差分函数的有效近似来提取非周期性,则该方法可以在具有挑战性的设备(例如助听器)中实现。对由几种类型的噪声降低的语音句子数据库的评估表明,提出的语音分类器对于不同的噪声和信噪比具有鲁棒性。此外,为了评估语音增强方法的适用性,实现了一种简单的基于F 0 的语音增强算法,该算法集成了所提出的分类器。与其他知名的语音增强方法相比,该系统在客观度量方面显示出了竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号