首页> 外文期刊>Signal Processing, IET >Polynomial segment model for radar target recognition using Gibbs sampling approach
【24h】

Polynomial segment model for radar target recognition using Gibbs sampling approach

机译:吉布斯采样法的雷达目标识别多项式分段模型

获取原文
获取原文并翻译 | 示例

摘要

High resolution range profile (HRRP) is a widely noted tool in radar target recognition. However, its high sensitivity to the target's aspect angle makes it necessary to seek solutions for this problem. One alternative is to assume consecutive samples of HRRP identically and independently distributed in small frames of aspect angles, an assumption which is not true in reality. Based on this simplifying assumption, some models, such as the hidden Markov model, have been developed to characterise the sequential information contained in multi-aspect radar echoes. As a result, these models consider only the short dependency between consecutive samples. Considering such issues, in this study, the authors propose an alternative polynomial segment model. In addition, using a Markov chain Monte–Carlo based Gibbs sampler as an iterative approach to estimate the parameters of the segment model, the authors will show that the results are quite satisfactory.
机译:高分辨率范围轮廓(HRRP)是雷达目标识别中广为关注的工具。但是,它对目标物的纵横比具有很高的灵敏度,因此有必要寻求解决该问题的方法。一种选择是假设HRRP的连续样本相同且独立地分布在纵横比小的帧中,这一假设在现实中是不正确的。基于此简化的假设,已开发了一些模型(例如隐马尔可夫模型)来表征多方面雷达回波中包含的顺序信息。结果,这些模型仅考虑连续样本之间的短相关性。考虑到这些问题,在这项研究中,作者提出了一种替代的多项式分段模型。另外,使用基于马尔可夫链的基于蒙特卡洛的Gibbs采样器作为迭代方法来估计段模型的参数,作者将证明结果是令人满意的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号