首页> 外文期刊>Signal Processing, IET >Support vector machine and higher-order cumulants based blind identification for non-linear Wiener models
【24h】

Support vector machine and higher-order cumulants based blind identification for non-linear Wiener models

机译:基于支持向量机和高阶累积量的非线性Wiener模型的盲辨识

获取原文
获取原文并翻译 | 示例

摘要

A blind identification method for non-linear Wiener models is investigated. When the input signal of the system does not adopt a Gaussian random signal, the identification process with the input signal is changed into the one without input signal by using the first-order statistical properties of the cyclostationary input signal and the inverse mapping of the non-linear part of the model initially, moreover, all internal variables are recovered only based on the output signal. Then, the estimates of the order and parameters of the model are obtained by using the support vector machine regression theory and the higher-order cumulants principle. Finally, compared with other methods, the simulation results show the effectiveness of the proposed method for identifying non-linear Wiener models.
机译:研究了非线性维纳模型的盲辨识方法。当系统的输入信号不采用高斯随机信号时,通过利用循环平稳输入信号的一阶统计特性和非平稳信号的逆映射,将有输入信号的识别过程更改为无输入信号的过程。此外,模型的线性部分最初仅根据输出信号来恢复所有内部变量。然后,使用支持向量机回归理论和高阶累积量原理,获得模型阶数和参数的估计值。最后,与其他方法相比,仿真结果表明了该方法在识别非线性维纳模型中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号