首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Binarized Brain Connectivity: A Novel Autocorrelation-Based Iterative Synchronization Technique
【24h】

Binarized Brain Connectivity: A Novel Autocorrelation-Based Iterative Synchronization Technique

机译:二值化的大脑连通性:一种基于自相关的新型迭代同步技术

获取原文
获取原文并翻译 | 示例
           

摘要

The brain is a highly interconnected neurobiological system. Network-level characterization is thus largely performed to understand brain functioning. Brain activity can be captured through modalities like functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG). Brain networks are then estimated through pairwise relationships between brain regions using brain connectivity. Functional connectivity, which measures the degree of coactivation between two brain regions, is estimated from pairwise EEG (or fMRI) time series using a measure of synchronization like Pearson's correlation. However, all such measures suffer from the fact that they are continuous variables, with values often lying in the ambiguous range (say 0.3-0.7) wherein it is difficult to infer whether the two time series are actually synchronized or not. This makes the interpretation of findings challenging. Synchronization measures are also largely corrupted by noise. In this paper, a novel autocorrelation-based iterative synchronization (ABIS) technique is proposed, which provides binary synchronization values (0 = not synchronized, 1 = synchronized). It is entirely data driven with no assumptions, input parameters, or arbitrary choices. We demonstrate that ABIS resolves ambiguous synchronizations and provides reliable, robust, and neurobiologically meaningful binary synchronization values. ABIS also performs better than conventional synchronization on all these faculties. This technique has tremendous applications in brain functional connectivity analysis. Complex network modeling of the brain using graph theoretic techniques largely require binary connectivity matrices, which are often obtained by arbitrarily thresholding continuous connectivity matrices. Such practice usually sophisticates the analysis or yields unreliable results. The use of ABIS could entirely eliminate these issues since it provides binary connectivity matrices in a single step, without assumptions or arbitrary choices. Additionally, it resolves ambiguous connectivities to provide a set of sure-connections and sure no-connections, which improves the interpretability of connectivity results and enhances noise robustness (which plagues connectivity analysis). This study has potential applications in network modeling of the brain, and graph-theoretic analysis in general.
机译:大脑是高度互连的神经生物学系统。因此,在很大程度上执行网络级表征以了解大脑功能。可以通过功能性磁共振成像(fMRI)和脑电图(EEG)等方式捕获大脑活动。然后使用大脑连接性通过大脑区域之间的成对关系来估算大脑网络。使用成对的EEG(或fMRI)时间序列,使用像皮尔森相关性之类的同步性度量,可以评估测量两个大脑区域之间共激活程度的功能连通性。但是,所有这些度量都受到以下事实的困扰:它们是连续变量,其值通常位于不明确的范围内(例如0.3-0.7),其中很难推断两个时间序列是否实际上同步。这使得对结果的解释具有挑战性。同步措施在很大程度上也被噪声破坏。本文提出了一种新的基于自相关的迭代同步(ABIS)技术,该技术可提供二进制同步值(0 =不同步,1 =同步)。它完全是数据驱动的,没有任何假设,输入参数或任意选择。我们证明ABIS解决了模棱两可的同步,并提供了可靠,健壮和神经生物学上有意义的二进制同步值。在所有这些学院中,ABIS的性能也比常规同步更好。该技术在大脑功能连接分析中具有巨大的应用。使用图论技术对大脑进行复杂的网络建模在很大程度上需要二进制连接矩阵,这些矩阵通常是通过对连续连接矩阵进行任意阈值获得的。这种做法通常会使分析复杂化或产生不可靠的结果。 ABIS的使用可以完全消除这些问题,因为它只需一步即可提供二进制连接矩阵,而无需进行假设或任意选择。此外,它解决了模棱两可的连通性,以提供一组确定连接和确定无连接,这改善了连接结果的可解释性并增强了噪声鲁棒性(这困扰着连接分析)。这项研究在大脑的网络建模以及一般的图论分析中具有潜在的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号