首页> 外文期刊>Signal, Image and Video Processing >A minimum entropy based switched adaptive predictor for lossless compression of images - Springer
【24h】

A minimum entropy based switched adaptive predictor for lossless compression of images - Springer

机译:用于图像无损压缩的基于最小熵的切换自适应预测器-Springer

获取原文
获取原文并翻译 | 示例

摘要

The gradient adjusted predictor (GAP) uses seven fixed slope quantization bins and a predictor is associated with each bin, for prediction of pixels. The slope bin boundary in the same appears to be fixed without employing a criterion function. This paper presents a technique for slope classification that results in slope bins which are optimum for a given set of images. It also presents two techniques that find predictors which are statistically optimal for each of the slope bins. Slope classification and the predictors associated with the slope bins are obtained off-line. To find a representative predictor for a bin, a set of least-squares (LS) based predictors are obtained for all the pixels belonging to that bin. A predictor, from the set of predictors, that results in the minimum prediction error energy is chosen to represent the bin. Alternatively, the predictor is chosen, from the same set, based on minimum entropy as the criterion. Simulation results, of the proposed method have shown a significant improvement in the compression performance as compared to the GAP. Computational complexity of the proposed method , excluding the training process, is of the same order as that of GAP.
机译:梯度调整的预测器(GAP)使用七个固定的斜率量化仓,并且预测器与每个仓关联,用于像素预测。在不采用标准函数的情况下,坡度边界在其中似乎是固定的。本文介绍了一种用于坡度分类的技术,该技术可生成对于给定图像集最合适的坡度仓。它还提出了两种技术,这些技术可以找到每个斜率仓在统计上最佳的预测变量。离线获得坡度分类和与坡度仓相关的预测因子。为了找到bin的代表性预测变量,为属于那个bin的所有像素获得了一组基于最小二乘(LS)的预测变量。从该组预测器中选择一个导致最小预测误差能量的预测器来表示bin。备选地,基于最小熵作为准则从同一组中选择预测变量。与GAP相比,该方法的仿真结果显示出压缩性能的显着改善。除训练过程外,该方法的计算复杂度与GAP相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号