首页> 外文期刊>Signal, Image and Video Processing >Representing dense crowd patterns using bag of trajectory graphs - Springer
【24h】

Representing dense crowd patterns using bag of trajectory graphs - Springer

机译:使用轨迹图袋表示密集人群模式-Springer

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper was to address the problem of dense crowd event recognition in the surveillance video. Previous particle flow-based methods efficiently capture the convolutional motion in the crowded scene. However, the group-level description was rarely studied due to huge loss of group structure and intra-class variability. To address these issues, we present a novel crowd behavior representation called bag of trajectory graphs (BoTG). Firstly, we design a group-level representation beyond particle flow. From the observation that crowd particles are composed of atomic subgroups corresponding to informative behavior patterns, particle trajectories that simulate motion of individuals will be clustered to form groups. Secondly, we connect nodes in each group as a trajectory graph and propose 3 informative features to encode the graphs, namely, graph structure, group attribute, and dynamic motion, which characterize the structure, the motion within, and among the trajectory graphs. Finally, each clip of crowd event can be further described by BoTG as the occurrences of behavior patterns, which provides critical clues for categorizing specific crowd event. We conduct extensive experiments on public datasets for abnormality detection and event recognition. The results demonstrate the effectiveness of our BoTG on characterizing the group behaviors in dense crowd.
机译:本文的目的是解决监视视频中密集人群事件识别的问题。以前的基于粒子流的方法可以有效地捕获拥挤场景中的卷积运动。然而,由于组结构的巨大损失和类内变异性,很少研究组级描述。为了解决这些问题,我们提出了一种新颖的人群行为表示形式,称为轨迹图袋(BoTG)。首先,我们设计了粒子流以外的组级表示。从观察到人群粒子是由与信息行为模式相对应的原子子组组成的,模拟个体运动的粒子轨迹将被聚类为一组。其次,我们将每个组中的节点作为轨迹图进行连接,并提出3种信息特征来对图进行编码,即图结构,组属性和动态运动,以表征结构,轨迹图内以及轨迹图之间的运动。最后,人群事件的每个片段都可以由BoTG进一步描述为行为模式的出现,这为分类特定人群事件提供了关键线索。我们对公共数据集进行了广泛的实验,用于异常检测和事件识别。结果证明了我们的BoTG在表征人群中群体行为方面的有效性。

著录项

  • 来源
    《Signal, Image and Video Processing》 |2014年第1asupplement期|173-181|共9页
  • 作者单位

    1.School of Computer Science Harbin Institute of Technology Harbin 150001 Heilongjiang China;

    1.School of Computer Science Harbin Institute of Technology Harbin 150001 Heilongjiang China;

    2.Institue of Computer Techology Chinese Academy of Science Beijing 100010 China;

    1.School of Computer Science Harbin Institute of Technology Harbin 150001 Heilongjiang China;

    1.School of Computer Science Harbin Institute of Technology Harbin 150001 Heilongjiang China;

    1.School of Computer Science Harbin Institute of Technology Harbin 150001 Heilongjiang China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bag of trajectory graphs; Group attributes; Crowd behavior; Event recognition;

    机译:轨迹图袋;群体属性;人群行为;事件识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号