首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Exploring Coherent Motion Patterns via Structured Trajectory Learning for Crowd Mood Modeling
【24h】

Exploring Coherent Motion Patterns via Structured Trajectory Learning for Crowd Mood Modeling

机译:通过结构化轨迹学习探索相干运动模式以进行人群情绪建模

获取原文
获取原文并翻译 | 示例

摘要

Crowd behavior analysis has recently attracted extensive attention in research. However, the existing research mainly focuses on investigating motion patterns in crowds, while the emotional aspects of crowd behaviors are left unexplored. Analyzing the emotion of crowd behaviors is indeed extremely important, as it uncovers the social moods that are beneficial for video surveillance. In this paper, we propose a novel crowd representation termed crowd mood. Crowd mood is established based upon the discovery that the social emotional hypothesis of crowd behaviors can be revealed by investigating the spacing interactions and the structural levels of motion patterns in crowds. To this end, we first learn the structured trajectories of crowds by particle advection using low-rank approximation with group sparsity constraint, which implicitly characterizes the coherent motion patterns. Second, rich emotional motion features are explicitly extracted and fused by support vector regression to reflect social characteristics. In particular, we construct weighted features in a boosted manner by considering the features’ significance. Finally, crowd mood is intuitively presented as affective curves to track the emotion states of the crowd dynamics, which is robust to noise, sensitive to semantic shift, and compact for pattern expressions. Extensive evaluations on crowd video data sets demonstrate that our approach effectively models crowd mood and achieves significantly better results with comparisons to several alternative and state-of-the-art approaches for various tasks, i.e., crowd mood classification, global abnormal mood detection, and crowd emotion matching.
机译:人群行为分析最近引起了研究的广泛关注。然而,现有的研究主要集中在调查人群中的运动模式,而人群行为的情感方面尚待探索。分析人群行为的情感确实非常重要,因为它揭示了有益于视频监控的社交情绪。在本文中,我们提出了一种新颖的人群表示形式,称为人群情绪。通过发现人群行为的社会情感假说可以通过研究人群中的间距互动和运动模式的结构水平来建立,从而建立人群情绪。为此,我们首先使用带有组稀疏约束的低秩逼近,通过粒子对流学习人群的结构化轨迹,这隐式地描述了相干运动模式。其次,通过支持向量回归显式地提取和融合丰富的情绪运动特征,以反映社会特征。特别是,我们通过考虑特征的重要性以增强的方式构造加权特征。最后,将人群情绪直观地呈现为情感曲线,以跟踪人群动态的情感状态,从而对噪声具有鲁棒性,对语义转换敏感并且对模式表达紧凑。对人群视频数据集的广泛评估表明,与针对各种任务的几种替代方法和最新方法相比,我们的方法可以有效地模拟人群情绪,并获得明显更好的结果,例如人群情绪分类,全局异常情绪检测和人群情感匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号