首页> 外文期刊>SIGCSE bulletin >Automatically Identifying Learners' Problem Solving Strategies In-Process Solving Algorithmic Problems
【24h】

Automatically Identifying Learners' Problem Solving Strategies In-Process Solving Algorithmic Problems

机译:自动识别学习者的问题解决策略进程中解决算法的问题

获取原文
获取原文并翻译 | 示例

摘要

Learners, not only in secondary education, but also in CS1 courses at universities, often use special learning and programming environments to practice basics of programming and solving algorithmic problems. These tools give feedback to the learners without taking into account the individual problem solving strategy. The system messages are often hardly helpful because of their pure technical information. To adapt the feedback of the" software to each learner's problem solving process it is necessary to enhance the learning environment with a tool to identify the individual problem solving strategy in-process automatically.rnLike described in [3], a tracking software was developed that records learner-system interactions differentiated by certain categories during the problem solving process. The collected data were analyzed with the help of special diagnostic software by two human researchers. Four clearly identifiable patterns in the chronology of the recorded learner-system-interactions were one of their results. Independently the observers attributed problem solving strategies to these patterns [2]. Their results were nearly identical. Now, this attribution should be validated. Therefore, another instrument to identify the used problem solving strategy is necessary, but it should not depend on stepwise observing the problem solving process. A solution is the employment of questionnaires based on the theories of Ajzen and Fishbein [1]. In this context, the learner's problem solving strategy is adequate to the behavior that is predicted by the evaluation of the questionnaires.rnThe authors' hope is that the results of analyzing the questionnaires fit to the results of the human observers.rnPattern recognition methods can be used to identify the patterns in the collected data automatically. Especially automatic speech recognition [4] has many similar requirements as the research project described here. In speech recognition the output are phonemes, here the output are the different categories of learner-system-interactions. In speech recognition there is a hidden markov model (HMM) for every word, here there is a HMM for every single problem solving strategy. With the help of transition and output probabilities, single learner-system-interactions not fitting to the strategy pattern and tolerance concerning residence time at several interactions are modeled. To train the software, frequencies in the collected data of pilot studies are counted. The software counts back the most probable pattern (problem solving strategy) using the Viterbi algorithm.rnIn this way it is possible to identify learner's individual problem solving strategy in-process automatically. Another tool to find additional other patterns will be developed and implemented.
机译:学习者不仅在中学教育中,而且在大学的CS1课程中,都经常使用特殊的学习和编程环境来练习编程的基础知识和解决算法问题。这些工具可向学习者提供反馈,而无需考虑单独的问题解决策略。由于系统消息纯净的技术信息,因此通常几乎无济于事。为了使“软件”的反馈适应每个学习者的问题解决过程,有必要使用一种工具来自动识别各个问题的解决策略,以增强学习环境。像[3]中所述,开发了一种跟踪软件,该软件可以记录在解决问题过程中按特定类别区分的学习者系统互动,由两名人类研究人员借助特殊的诊断软件对收集的数据进行了分析,记录的学习者系统互动的时间顺序中有四种清晰可辨的模式是其中之一观察者独立地将问题解决策略归因于这些模式[2],他们的结果几乎相同,现在,应对此属性进行验证,因此,有必要使用另一种工具来确定所使用的问题解决策略,但不应依赖于此。在逐步观察问题解决过程中,一个解决方案是使用Questionna基于Ajzen和Fishbein [1]的理论。在这种情况下,学习者的问题解决策略足以满足问卷评估所预测的行为。作者希望寄希望于分析问卷的结果与观察者的结果相适应。用于自动识别收集的数据中的模式。特别是自动语音识别[4]与这里描述的研究项目有许多相似的要求。在语音识别中,输出是音素,这里的输出是学习者系统交互的不同类别。在语音识别中,每个单词都有一个隐藏的马尔可夫模型(HMM),这里每个解决问题的策略都有一个HMM。借助于转移和输出概率,对不适合策略模式的单个学习者系统交互进行建模,并考虑了多次交互下的停留时间公差。为了训练该软件,对试点研究的收集数据中的频率进行计数。该软件使用维特比(Viterbi)算法计算最可能的模式(问题解决策略)。以这种方式,可以在过程中自动识别学习者的个别问题解决策略。将开发并实现另一个用于查找其他模式的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号