首页> 外文期刊>Services Computing, IEEE Transactions on >Prioritizing Test Cases for Regression Testing of Location-Based Services: Metrics, Techniques, and Case Study
【24h】

Prioritizing Test Cases for Regression Testing of Location-Based Services: Metrics, Techniques, and Case Study

机译:为基于位置的服务的回归测试确定测试用例的优先级:度量,技术和案例研究

获取原文
获取原文并翻译 | 示例

摘要

Location-based services (LBS) are widely deployed. When the implementation of an LBS-enabled service has evolved, regression testing can be employed to assure the previously established behaviors not having been adversely affected. Proper test case prioritization helps reveal service anomalies efficiently so that fixes can be scheduled earlier to minimize the nuisance to service consumers. A key observation is that locations captured in the inputs and the expected outputs of test cases are physically correlated by the LBS-enabled service, and these services heuristically use estimated and imprecise locations for their computations, making these services tend to treat locations in close proximity homogenously. This paper exploits this observation. It proposes a suite of metrics and initializes them to demonstrate input-guided techniques and point-of-interest (POI) aware test case prioritization techniques, differing by whether the location information in the expected outputs of test cases is used. It reports a case study on a stateful LBS-enabled service. The case study shows that the POI-aware techniques can be more effective and more stable than the baseline, which reorders test cases randomly, and the input-guided techniques. We also find that one of the POI-aware techniques, cdist, is either the most effective or the second most effective technique among all the studied techniques in our evaluated aspects, although no technique excels in all studied SOA fault classes.
机译:基于位置的服务(LBS)被广泛部署。当支持LBS的服务的实现发生变化时,可以使用回归测试来确保先前建立的行为不会受到不利影响。适当的测试用例优先级排序有助于有效地揭示服务异常,以便可以提前安排修复程序,以最大程度地减少对服务使用者的干扰。一个关键的观察结果是,通过启用LBS的服务,在测试用例的输入和预期输出中捕获的位置在物理上相关联,并且这些服务启发式地使用估计的和不精确的位置进行计算,从而使这些服务趋向于处理非常接近的位置均匀地本文利用了这一观察结果。它提出了一套度量标准并将其初始化,以演示输入指导技术和关注点(POI)的测试用例优先排序技术,不同之处在于是否使用了测试用例预期输出中的位置信息。它报告了有关启用有状态LBS的服务的案例研究。案例研究表明,POI感知技术可以比基线更加有效和稳定,基线可以对测试案例和输入指导技术进行随机重新排序。我们还发现,在我们评估的方面,尽管所有技术都无法在所有SOA故障类别中脱颖而出,但是POI感知技术之一cdist是所有研究技术中最有效或次第二的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号