首页> 外文期刊>Services Computing, IEEE Transactions on >Reputation Measurement and Malicious Feedback Rating Prevention in Web Service Recommendation Systems
【24h】

Reputation Measurement and Malicious Feedback Rating Prevention in Web Service Recommendation Systems

机译:Web服务推荐系统中的信誉评估和恶意反馈评级预防

获取原文
获取原文并翻译 | 示例

摘要

Web service recommendation systems can help service users to locate the right service from the large number of available web services. Avoiding recommending dishonest or unsatisfactory services is a fundamental research problem in the design of web service recommendation systems. Reputation of web services is a widely-employed metric that determines whether the service should be recommended to a user. The service reputation score is usually calculated using feedback ratings provided by users. Although the reputation measurement of web service has been studied in the recent literature, existing malicious and subjective user feedback ratings often lead to a bias that degrades the performance of the service recommendation system. In this paper, we propose a novel reputation measurement approach for web service recommendations. We first detect malicious feedback ratings by adopting the cumulative sum control chart, and then we reduce the effect of subjective user feedback preferences employing the Pearson Correlation Coefficient. Moreover, in order to defend malicious feedback ratings, we propose a malicious feedback rating prevention scheme employing Bloom filtering to enhance the recommendation performance. Extensive experiments are conducted by employing a real feedback rating data set with 1.5 million web service invocation records. The experimental results show that our proposed measurement approach can reduce the deviation of the reputation measurement and enhance the success ratio of the web service recommendation.
机译:Web服务推荐系统可以帮助服务用户从大量可用的Web服务中找到正确的服务。避免推荐不诚实或不令人满意的服务是Web服务推荐系统设计中的一个基本研究问题。 Web服务的信誉是一种广泛使用的指标,它确定是否应将服务推荐给用户。服务信誉分数通常使用用户提供的反馈评分来计算。尽管在最近的文献中已经研究了Web服务的信誉度量,但是现有的恶意和主观用户反馈评分通常会导致偏差,从而降低服务推荐系统的性能。在本文中,我们为Web服务建议提出了一种新颖的信誉度量方法。我们首先通过采用累积和控制图来检测恶意反馈等级,然后使用Pearson相关系数降低主观用户反馈偏好的影响。此外,为了捍卫恶意反馈评级,我们提出了一种采用布隆过滤的恶意反馈评级预防方案,以提高推荐性能。通过使用具有150万个Web服务调用记录的真实反馈评级数据集进行了广泛的实验。实验结果表明,我们提出的度量方法可以减少信誉度量的偏差并提高Web服务推荐的成功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号