首页> 外文期刊>Services Computing, IEEE Transactions on >Big Data Driven Mobile Traffic Understanding and Forecasting: A Time Series Approach
【24h】

Big Data Driven Mobile Traffic Understanding and Forecasting: A Time Series Approach

机译:大数据驱动的移动流量理解和预测:时间序列方法

获取原文
获取原文并翻译 | 示例

摘要

Understanding and forecasting mobile traffic of large scale cellular networks is extremely valuable for service providers to control and manage the explosive mobile data, such as network planning, load balancing, and data pricing mechanisms. This paper targets at extracting and modeling traffic patterns of 9,000 cellular towers deployed in a metropolitan city. To achieve this goal, we design, implement, and evaluate a time series analysis approach that is able to decompose large scale mobile traffic into regularity and randomness components. Then, we use time series prediction to forecast the traffic patterns based on the regularity components. Our study verifies the effectiveness of our utilized time series decomposition method, and shows the geographical distribution of the regularity and randomness component. Moreover, we reveal that high predictability of the regularity component can be achieved, and demonstrate that the prediction of randomness component of mobile traffic data is impossible.
机译:对于服务提供商控制和管理爆炸性的移动数据(例如网络规划,负载平衡和数据定价机制),了解和预测大型蜂窝网络的移动业务非常有价值。本文的目标是提取和建模在大都市中部署的9,000个蜂窝塔的交通模式。为了实现此目标,我们设计,实施和评估了一种时间序列分析方法,该方法能够将大规模移动流量分解为规则性和随机性分量。然后,我们使用时间序列预测来基于规则性成分预测交通模式。我们的研究验证了我们使用的时间序列分解方法的有效性,并显示了规则性和随机性分量的地理分布。此外,我们揭示了可以实现对规则性分量的高度可预测性,并证明了对移动交通数据的随机性分量的预测是不可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号