首页> 外文期刊>Services Computing, IEEE Transactions on >Understanding Mobile Users’ Privacy Expectations: A Recommendation-Based Method Through Crowdsourcing
【24h】

Understanding Mobile Users’ Privacy Expectations: A Recommendation-Based Method Through Crowdsourcing

机译:了解移动用户的隐私期望:通过众包的推荐方法

获取原文
获取原文并翻译 | 示例

摘要

Privacy is a pivotal issue of mobile apps because there is a plethora of personal and sensitive information in smartphones. Many mechanisms and tools are proposed to detect and mitigate privacy leaks. However, they rarely consider users' preferences and expectations. Users hold various expectation towards different mobile apps. For example, users may allow a social app to access their photos rather than a game app because it goes beyond users' expectation to access personal photos. Therefore, we believe it is practical and beneficial to understand users' privacy expectations on various mobile apps and help them mitigate privacy risks introduced by smartphones. To achieve this objective, we propose and implement PriWe, a system based on crowdsourcing driven by users who contribute privacy permission settings of the apps installed on their smartphones. PriWe leverages the crowdsourced permission settings to understand users' privacy expectations and provides app specific recommendations to mitigate information leakage. We deployed PriWe in the real world for evaluation. According to the feedback of 78 users who evaluated our system and 422 participants who completed our survey, PriWe is able to make proper recommendations which can match participants' privacy expectations and are mostly accepted by users, thereby help them to mitigate privacy disclosure in smartphones.
机译:隐私是移动应用程序的关键问题,因为智能手机中有一足的个人和敏感信息。提出了许多机制和工具来检测和减轻隐私泄漏。但是,他们很少考虑用户的偏好和期望。用户对不同的移动应用程序持有各种期望。例如,用户可以允许社交应用程序访问他们的照片而不是游戏应用程序,因为它超出了用户访问个人照片的期望。因此,我们认为,了解用户对各种移动应用程序的隐私期望并帮助他们减轻智能手机引入的隐私风险的实用性和有益。为了实现这一目标,我们提出并实施了Priwe,该系统是一种基于众包的系统,该系统由智能手机上安装的应用程序的隐私权设置的用户驱动。 Priwe利用众包的许可设置来了解用户的隐私期望,并提供应用程序特定建议,以减轻信息泄露。我们部署了Priwe在现实世界中进行评估。根据评估我们的系统的78名用户的反馈和422名参与者完成了我们的调查,Priwe能够做出可以匹配参与者隐私期望的适当建议,并且主要由用户接受,从而帮助他们在智能手机中减轻隐私披露。

著录项

  • 来源
    《Services Computing, IEEE Transactions on》 |2019年第2期|304-318|共15页
  • 作者单位

    Guangxi Univ Sch Comp & Elect Informat Nanning 530004 Peoples R China|CUHK Shenzhen Res Inst Shenzhen 518057 Peoples R China;

    Guangxi Univ Guangxi Key Lab Multimedia Commun & Network Techn Sch Comp & Elect Informat Nanning 530004 Peoples R China;

    Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China;

    Chinese Univ Hong Kong Dept Informat Engn Hong Kong Peoples R China;

    Virginia Polytech Inst & State Univ Dept Stat Blacksburg VA 24061 USA;

    Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China;

    Northeastern Univ Software Coll Shenyang 110004 Liaoning Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile privacy; mobile applications; recommendation; crowdsourcing;

    机译:移动隐私;移动应用;推荐;众包;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号