首页> 外文期刊>Services Computing, IEEE Transactions on >Understanding Mobile Users’ Privacy Expectations: A Recommendation-Based Method Through Crowdsourcing
【24h】

Understanding Mobile Users’ Privacy Expectations: A Recommendation-Based Method Through Crowdsourcing

机译:了解移动用户的隐私期望:通过众包的基于建议的方法

获取原文
获取原文并翻译 | 示例

摘要

Privacy is a pivotal issue of mobile apps because there is a plethora of personal and sensitive information in smartphones. Many mechanisms and tools are proposed to detect and mitigate privacy leaks. However, they rarely consider users' preferences and expectations. Users hold various expectation towards different mobile apps. For example, users may allow a social app to access their photos rather than a game app because it goes beyond users' expectation to access personal photos. Therefore, we believe it is practical and beneficial to understand users' privacy expectations on various mobile apps and help them mitigate privacy risks introduced by smartphones. To achieve this objective, we propose and implement PriWe, a system based on crowdsourcing driven by users who contribute privacy permission settings of the apps installed on their smartphones. PriWe leverages the crowdsourced permission settings to understand users' privacy expectations and provides app specific recommendations to mitigate information leakage. We deployed PriWe in the real world for evaluation. According to the feedback of 78 users who evaluated our system and 422 participants who completed our survey, PriWe is able to make proper recommendations which can match participants' privacy expectations and are mostly accepted by users, thereby help them to mitigate privacy disclosure in smartphones.
机译:隐私是移动应用程序的关键问题,因为智能手机中存在大量的个人和敏感信息。提出了许多机制和工具来检测和减轻隐私泄漏。但是,他们很少考虑用户的偏好和期望。用户对不同的移动应用抱有各种期望。例如,用户可能允许社交应用访问他们的照片而不是游戏应用,因为它超出了用户访问个人照片的期望。因此,我们认为了解用户对各种移动应用程序的隐私期望并帮助他们减轻智能手机带来的隐私风险是切实可行和有益的。为了实现这一目标,我们提出并实施了PriWe,这是一个基于众包的系统,由用户为安装在其智能手机上的应用提供隐私权限设置的用户驱动。 PriWe利用众包的权限设置来了解用户的隐私期望,并提供特定于应用程序的建议以减轻信息泄漏。我们将PriWe部署在现实世界中进行评估。根据评估系统的78位用户和完成调查的422位参与者的反馈,PriWe能够提出与参与者的隐私期望相符的适当建议,并得到用户的普遍接受,从而帮助他们减轻智能手机中的隐私披露。

著录项

  • 来源
    《Services Computing, IEEE Transactions on》 |2019年第2期|304-318|共15页
  • 作者单位

    Guangxi Univ, Sch Comp & Elect Informat, Nanning 530004, Peoples R China|CUHK Shenzhen Res Inst, Shenzhen 518057, Peoples R China;

    Guangxi Univ, Guangxi Key Lab Multimedia Commun & Network Techn, Sch Comp & Elect Informat, Nanning 530004, Peoples R China;

    Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China;

    Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R China;

    Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24061 USA;

    Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China;

    Northeastern Univ, Software Coll, Shenyang 110004, Liaoning, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile privacy; mobile applications; recommendation; crowdsourcing;

    机译:移动隐私;移动应用;推荐;众包;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号