首页> 外文期刊>Services Computing, IEEE Transactions on >A Double Deep Q-Learning Model for Energy-Efficient Edge Scheduling
【24h】

A Double Deep Q-Learning Model for Energy-Efficient Edge Scheduling

机译:高能效边缘调度的双深度Q学习模型

获取原文
获取原文并翻译 | 示例

摘要

Reducing energy consumption is a vital and challenging problem for the edge computing devices since they are always energy-limited. To tackle this problem, a deep Q-learning model with multiple DVFS (dynamic voltage and frequency scaling) algorithms was proposed for energy-efficient scheduling (DQL-EES). However, DQL-EES is highly unstable when using a single stacked auto-encoder to approximate the Q-function. Additionally, it cannot distinguish the continuous system states well since it depends on a Q-table to generate the target values for training parameters. In this paper, a double deep Q-learning model is proposed for energy-efficient edge scheduling (DDQ-EES). Specially, the proposed double deep Q-learning model includes a generated network for producing the Q-value for each DVFS algorithm and a target network for producing the target Q-values to train the parameters. Furthermore, the rectified linear units (ReLU) function is used as the activation function in the double deep Q-learning model, instead of the Sigmoid function in QDL-EES, to avoid gradient vanishing. Finally, a learning algorithm based on experience replay is developed to train the parameters of the proposed model. The proposed model is compared with DQL-EES on EdgeCloudSim in terms of energy saving and training time. Results indicate that our proposed model can save average $2%hbox{-}2.4%$2%-2.4% energy and achieve a higher training efficiency than QQL-EES, proving its potential for energy-efficient edge scheduling.
机译:对于边缘计算设备而言,降低能耗是一个至关重要且具有挑战性的问题,因为它们始终受到能量的限制。为了解决此问题,提出了具有多个DVFS(动态电压和频率缩放)算法的深度Q学习模型,用于节能调度(DQL-EES)。但是,当使用单个堆叠式自动编码器逼近Q函数时,DQL-EES高度不稳定。另外,它不能很好地区分连续系统状态,因为它依赖于Q表来生成训练参数的目标值。本文提出了一种双深度Q学习模型,用于节能边缘调度(DDQ-EES)。特别地,所提出的双深度Q学习模型包括用于为每种DVFS算法生成Q值的生成网络和用于生成目标Q值以训练参数的目标网络。此外,在双深度Q学习模型中,将整流线性单位(ReLU)函数用作激活函数,而不是QDL-EES中的Sigmoid函数,以避免梯度消失。最后,开发了一种基于经验回放的学习算法来训练所提出模型的参数。在节能和培训时间方面,将提出的模型与EdgeCloudSim上的DQL-EES进行了比较。结果表明,我们提出的模型可以节省平均$ 2 % hbox {-} 2.4 %$ 2%-2.4%的能量,并且比QQL-EES达到更高的训练效率,证明了其在节能边缘调度方面的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号