首页> 外文期刊>Service Oriented Computing and Applications >Resource virtualization methodology for on-demand allocation in cloud computing systems
【24h】

Resource virtualization methodology for on-demand allocation in cloud computing systems

机译:云计算系统中按需分配的资源虚拟化方法

获取原文
获取原文并翻译 | 示例

摘要

The resources’ heterogeneity and unbalanced capability, together with the diversity of resource requirements in cloud computing systems, have produced great contradictions between resources’ tight coupling characteristics and user’s multi-granularities requirements. We propose a resource virtualization model and its on-demand allocation oriented infrastructure mainly providing computing services to solve that problem. A loosely coupled resource environment centered on resource users is created to complete a mapping from physical view of resources to logic view of resources. Heuristic resource combination algorithm (HRCA) is proposed to transform physical resources to logic resources, which meets two requirements: randomness in combination and fluctuation control to the size of resources granularities. On the basis of the appraisal indexes presented for the on-demand allocation, resource matching algorithm (RMA), targeting at resource satisfaction with the highest resource utilization, is designed to reuse resources. RMA can satisfy users’ requirement in limited time and keep resource satisfaction in the highest level in the condition of logic resources granularities being less than their required size. Resource reconfiguration algorithm (RRA) is presented to implement resource matching in the condition that virtual computing resource pool cannot match granularities of resource requirements. RRA assures the lowest resource refusal rate and the greatest resource satisfaction. We verify the effectiveness, performance and accuracy of algorithms in implementing the goal of resource virtualization centered on resource users and on-demand allocation.
机译:资源的异构性和不平衡的能力,再加上云计算系统中对资源的要求的多样性,已经在资源的紧密耦合特性和用户的多粒度要求之间产生了很大的矛盾。我们提出了一种资源虚拟化模型及其按需分配的基础架构,主要提供计算服务来解决该问题。创建了一个以资源用户为中心的松散耦合资源环境,以完成从资源物理视图到资源逻辑视图的映射。提出了一种启发式资源组合算法(HRCA),将物理资源转换为逻辑资源,满足两个要求:组合的随机性和对资源粒度大小的波动控制。在提出按需分配的评估指标的基础上,设计了针对资源利用率最高,资源利用率最高的资源匹配算法(RMA)。 RMA可以在有限的时间内满足用户的需求,并在逻辑资源粒度小于其所需大小的情况下将资源满意度保持在最高水平。提出了资源重新配置算法(RRA)以在虚拟计算资源池无法匹配资源需求的粒度的情况下实现资源匹配。 RRA确保最低的资源拒绝率和最高的资源满意度。我们在实现以资源用户和按需分配为中心的资源虚拟化目标方面,验证了算法的有效性,性能和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号