首页> 外文期刊>Sequential analysis >Distributional Properties of CUSUM Stopping Times and Stopped Processes
【24h】

Distributional Properties of CUSUM Stopping Times and Stopped Processes

机译:CUSUM停止时间和停止过程的分布特性

获取原文
获取原文并翻译 | 示例

摘要

Let {Z(t), t ≥ 0} be a stochastic process with stationary independent increments and let T_1 = inf {t ≥ 0 : Z(t) - min_(0≤s≤t), Z(s) ≥ h}, h > 0. Under suitable conditions on Z(t), we obtain the joint Laplace transform of T_1 and Z(T_1) by deriving a formula for ψ_1(α, β) = E exp(αZ(T_1) - βT_1), where β > 0 and a is a suitable number in some interval containing zero. Furthermore, if T_2 is T_2 for Z~*(t) = -Z(t), then ψ_1(α, β) leads to a formula for ψ_2(α, β) = E exp(αZ(T_2) - βT_2). Moreover, if T = min(T_1, T_2), then a formula for ψ_1(α, β) = E exp(αZ(T) - βT) is also given in terms of ψ_1(α, β) and ψ_2(α, β). Our results provide quite direct and simple derivations of several results due to Taylor and others. Many of the isolated examples with detail theories of their own are unified by the given generalization. A number of examples are discussed.
机译:令{Z(t),t≥0}是具有平稳独立增量的随机过程,令T_1 = inf {t≥0:Z(t)-min_(0≤s≤t),Z(s)≥h} ,h>0。在Z(t)的适当条件下,我们通过推导ψ_1(α,β)= E exp(αZ(T_1)-βT_1)的公式,获得T_1和Z(T_1)的联合拉普拉斯变换,其中β> 0,并且a是在某个间隔中包含零的合适数字。此外,如果对于Z〜*(t)= -Z(t)T_2为T_2,则ψ_1(α,β)得出ψ_2(α,β)= E exp(αZ(T_2)-βT_2)的公式。此外,如果T = min(T_1,T_2),则ψ_1(α,β)= E exp(αZ(T)-βT)的公式也由ψ_1(α,β)和ψ_2(α, β)。由于泰勒(Taylor)和其他人的影响,我们的结果提供了一些结果的直接而简单的推导。通过给定的概括,许多具有各自详细理论的孤立示例得以统一。讨论了许多示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号