首页> 外文期刊>Sensors and materials >A Machine-learning-enabled Context-driven Control Mechanism for Software-defined Smart Home Networks
【24h】

A Machine-learning-enabled Context-driven Control Mechanism for Software-defined Smart Home Networks

机译:启用机器学习的上下文驱动控制机制,用于软件定义的智能家庭网络

获取原文
获取原文并翻译 | 示例

摘要

To address the challenges of autonomous capability enhancement in a smart home scenario, in this paper, we present a context-driven smart home control mechanism (SHCM) following software-defined network (SDN) design principles and a context cognition process. SHCM has three SDN-based layers: a control plane, a fog computing plane, and a data plane. We integrate a machine learning (ML) algorithm and an ontology model into the context cognition process, which will be leveraged to enhance the context-awareness-enabled automation level of smart home control systems. In the control plane, a controller adopts a ML-based tool to make connotative clustering and association rules via mining multiattribute context features inherent in diverse sensing applications, and utilizes an ontology model to automate integrated context management. Additionally, the fog computing plane applies edge-computing-supported context middleware to perform compressive sensing (CS)-based cross-layer context fusion. Furthermore, smart home devices implement context feedback in the data plane instructed by context-driven control strategies, which are mapped into the parameter matrix and matching rules in the lightweight flow-table mode. The effectiveness of this proposed control mechanism is validated by experiments using a context-oriented smart home prototype platform, which implements a closed-loop context-oriented feedback control from cognition-deduced knowledge generation to knowledge-driven cooperation in a cyber-physical smart home scenario. It is observed that the control mechanism can improve smart home automation and outperform baseline schemes.
机译:为解决智能家庭场景中自主能力增强的挑战,本文在软件定义的网络(SDN)设计原则和上下文认知过程之后,我们提出了一种上下文驱动的智能家庭控制机制(SHCM)。 SHCM具有三个基于SDN的层:控制平面,雾计算平面和数据平面。我们将机器学习(ML)算法和本体模型集成到上下文认知过程中,这将被利用,以增强智能家庭控制系统的上下文启用的自动化级别。在控制平面中,控制器采用基于ML的工具,通过挖掘多种传感应用中固有的MuliTifutute上下文特征来制作内涵聚类和关联规则,并利用本体模型来自动化集成上下文管理。此外,雾计算平面应用边缘计算支持的上下文中的中间件,以执行基于跨层上下文融合的压缩感测(CS)。此外,智能家居设备在由上下文驱动的控制策略指示的数据平面中实现上下文反馈,该控制策略被映射到参数矩阵和轻量级流动表模式中的匹配规则。通过使用面向上下文的智能家庭原型平台进行实验验证了该拟议控制机制的有效性,该实验将从认知推导的知识生成实现了从认知推导的知识生成到网络 - 物理智能家庭中的知识驱动的合作中的闭环上下文导向的反馈控制设想。观察到控制机构可以改善智能家庭自动化和优于基准方案。

著录项

  • 来源
    《Sensors and materials》 |2019年第6期|2103-2129|共27页
  • 作者单位

    East China Univ Sci & Technol Sch Informat Sci & Engn Meilong Rd 130 Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Sch Informat Sci & Engn Meilong Rd 130 Shanghai 200237 Peoples R China|Univ Sheffield Dept Elect & Elect Engn Sheffield S1 3JD S Yorkshire England;

    East China Univ Sci & Technol Sch Informat Sci & Engn Meilong Rd 130 Shanghai 200237 Peoples R China|Univ Sheffield Dept Elect & Elect Engn Sheffield S1 3JD S Yorkshire England;

    Univ Wisconsin Dept Elect & Comp Engn 1415 Engn Dr Madison WI 53706 USA;

    East China Univ Sci & Technol Sch Informat Sci & Engn Meilong Rd 130 Shanghai 200237 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    smart home control mechanism (SHCM); machine learning; software-defined networks; context;

    机译:智能家庭控制机制(SHCM);机器学习;软件定义的网络;背景;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号