首页> 外文期刊>IEEE sensors journal >Statistical Wavelets With Harmony Search- Based Optimal Feature Selection of EEG Signals for Motor Imagery Classification
【24h】

Statistical Wavelets With Harmony Search- Based Optimal Feature Selection of EEG Signals for Motor Imagery Classification

机译:具有和谐搜索的统计小波基于基于Seag的最优特征选择,用于电动机图像分类

获取原文
获取原文并翻译 | 示例

摘要

Brain Computer Interface (BCI) does not only help people of physical disability but also being used popularly in several other applications. Motor Imagery (MI) classification is one of the major contributions in BCI which works on segment of EEG signal within particular frequency band. Herein, feature selection plays important role in obtaining good classification results. In this article, Beta and Gamma frequency are considered with Statistical DWT (SDWT) based features for classification of EEG signals (MI classification) for patient monitoring, assistance healthcare services and daily living activities. Harmony search algorithm of feature selection is used to obtain the optimal feature set for classification of MI. The results show that frequency centric SDWT achieves average accuracy of 92.49% for weighted KNN (K-Nearest Neighbour) method. Comparison of accuracies before and after feature selection portrays that feature selection with harmony search improves the performance of proposed MI classification.
机译:脑电脑界面(BCI)不仅可以帮助身体残疾人,而且还在其他几种应用中普遍使用。电动机图像(MI)分类是BCI中的主要贡献之一,在特定频段内的EEG信号段工作。这里,特征选择在获得良好的分类结果方面起着重要作用。在本文中,使用基于统计DWT(SDWT)的统计DWT(SDWT)的特征来考虑Beta和Gamma频率,用于患者监测,援助医疗服务和日常生活活动的EEG信号(MI分类)的分类。和声搜索算法的特征选择用于获得MI分类的最佳功能集。结果表明,对于加权KNN(K最近邻居)方法,频率中心SDWT实现了92.49%的平均精度。特征选择前后的精度比较拍摄与和谐搜索的特征选择提高了提出的MI分类的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号