机译:物联网环境下基于新颖机器学习的运动图像脑电信号分类特征选择
School of Computer Engineering Kalinga Institute of Industrial Technology Deemed to be University Bhubaneswar Odisha 751024 India;
Department of Computer Science and Engineering Indian Institute of Information Technology Kalyani West Bengal 741235 India;
Pervasive and Mobile Computing Information Systems Department College of Computer and Information Sciences King Saud University Riyadh 11543 Saudi Arabia;
Department of Informatics Modeling Electronics and Systems University of Calabria 87036 Rende Italy;
BCI; Classification; Discernibility; EEG; Feature selection; Fuzzy set; IoMT; Machine learning;
机译:基于多层极限学习机的脑电信号运动图像任务分类
机译:使用差分进化和学习自动机自动选择运动图像脑电信号的特征
机译:评估基于CSP的两阶段通道选择方法和基于局部变换的特征提取,以对运动图像/运动EEG数据进行分类
机译:基于萤火虫时空差异Q学习和支持向量机的运动图像脑电信号特征选择
机译:基于机器学习,深度学习和互联网的医学信号识别系统
机译:基于萤火虫算法和学习自动机的运动图像脑电分类特征选择
机译:基于多层极限学习机的脑电信号运动图像任务分类