首页> 外文期刊>Future generation computer systems >A novel machine learning based feature selection for motor imagery EEG signal classification in Internet of medical things environment
【24h】

A novel machine learning based feature selection for motor imagery EEG signal classification in Internet of medical things environment

机译:物联网环境下基于新颖机器学习的运动图像脑电信号分类特征选择

获取原文
获取原文并翻译 | 示例

摘要

In Internet of Medical Things (IoMT) environment, feature selection is an efficient way of identifying the most discriminant health-related features from the original feature-set. Feature selection not only finds the best informative features, but also helps in reducing the overall dimensions of the given dataset. In this paper, the actual feature-set is obtained from Brain Computer Interface (BCI) Competition-II Dataset-III motor-imagery electroencephalogram (EEG) signal using the Adaptive Auto-regressive (AAR) feature extraction technique. Based on the order (number of AR coefficients) of the AAR algorithm, two variants of datasets have been generated: 12 (order = 6 per electrode) and 24 (order = 12 per electrode) AAR features datasets. Here, a new fuzzified version of discernibility matrix has been proposed to determine a subset of features, which provides the best classification accuracy. In order to find the best feature subset, various types of dissimilarity measures have been used and compared with one another in our proposed fuzzy discernibility matrix (FDM) based feature selection technique. We have implemented the proposed algorithm on the given datasets using both the holdout technique as well as the 10-fold cross-validation in our study. The performances of the selected feature-subsets are evaluated based on accuracies using the Support Vector Machine (SVM) and Ensemble variants of classifiers. The empirical results obtained from our experiments in this paper is competitive in terms of accuracy and outperformed the other popular t-test, Kullback-Leibler Divergence (KLD), Bhattacharyya distance and Gini index based feature selection techniques. Our proposed FDM based feature selection algorithm using holdout technique provides 80% and 78.57% accuracies for the 12 and 24 features AAR datasets respectively. The results obtained in the holdout technique with only 50% of the best discriminant features are even better than the performances obtained while using the original feature-sets (without using any feature selection technique). Again, it gives 78.57% and 75.57% mean-accuracies from 5 x 10-fold cross-validations using only 6and 12 most discriminant AAR features from the actual 12&24 features-sets respectively.
机译:在医疗物联网(IoMT)环境中,特征选择是从原始特征集中识别最可区别的与健康相关的特征的有效方法。特征选择不仅可以找到最佳的信息特征,而且还有助于减少给定数据集的整体尺寸。在本文中,使用自适应自回归(AAR)特征提取技术从脑计算机接口(BCI)竞赛II数据集III运动图像脑电图(EEG)信号中获取实际特征集。根据AAR算法的顺序(AR系数的数量),已生成了两个数据集变体:12个(每个电极= 6个)和24个(每个电极12个)AAR特征数据集。在这里,已经提出了一种新的模糊化的辨别矩阵版本来确定特征子集,这提供了最佳的分类精度。为了找到最佳的特征子集,已经使用了各种类型的相异性度量,并且在我们提出的基于模糊可分辨矩阵(FDM)的特征选择技术中将它们相互比较。在我们的研究中,我们使用保留技术以及10倍交叉验证在给定的数据集上实现了建议的算法。使用支持向量机(SVM)和分类器的Ensemble变体,根据准确性评估所选特征子集的性能。从本文的实验中获得的经验结果在准确性方面具有竞争力,并且优于其他流行的t检验,Kullback-Leibler发散(KLD),Bhattacharyya距离和基于Gini指数的特征选择技术。我们提出的使用保持技术的基于FDM的特征选择算法为12个和24个特征AAR数据集分别提供80%和78.57%的精度。在保留技术中仅具有50%的最佳判别特征的结果甚至比使用原始特征集(不使用任何特征选择技术)时获得的性能还要好。同样,通过分别使用实际12和24个特征集中的6个和12个最有区别的AAR特征,它通过5 x 10倍交叉验证给出了78.57%和75.57%的平均准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号