首页> 外文期刊>Sensors Journal, IEEE >Hierarchical Probabilistic Fusion Framework for Matching and Merging of 3-D Occupancy Maps
【24h】

Hierarchical Probabilistic Fusion Framework for Matching and Merging of 3-D Occupancy Maps

机译:匹配和合并3-D占用图的分层概率融合框架

获取原文
获取原文并翻译 | 示例

摘要

Fusing 3-D maps generated by multiple robots in real/semi-real time distributed mapping systems are addressed in this paper. A 3-D occupancy grid-based approach for mapping is utilized to satisfy the real/semi-real time and distributed operating constraints. This paper proposes a novel hierarchical probabilistic fusion framework, which consists of uncertainty modeling, map matching, transformation evaluation, and map merging. Before the fusion of maps, the map features and their uncertainties are explicitly modeled and integrated. For map matching, a two-level probabilistic map matching (PMM) algorithm is developed to include high-level structural and low-level voxel features. In the PMM, the structural uncertainty is first used to generate a coarse matching between the maps and its result is then used to improve the voxel level map matching, resulting in a more efficient and accurate matching between maps with a larger convergence basin. The relative transformation output from PMM algorithm is then evaluated based on the Mahalanobis distance, and the relative entropy filter is used subsequently to integrate the map dissimilarities more accurately, completing the map fusion process. The proposed approach is evaluated using map data collected from both simulated and real environments, and the results validate the accuracy, efficiency, and the support for larger convergence basin of the proposed 3-D occupancy map fusion framework.
机译:本文讨论了融合多个机器人在实时/半实时分布式制图系统中生成的3D地图。基于3-D占用网格的映射方法用于满足实时/半实时和分布式操作约束。本文提出了一种新颖的分层概率融合框架,该框架由不确定性建模,地图匹配,变换评估和地图合并组成。在融合地图之前,必须对地图特征及其不确定性进行明确建模和集成。对于地图匹配,开发了一种两级概率地图匹配(PMM)算法,以包括高级结构和低级体素特征。在PMM中,结构不确定性首先用于在地图之间生成粗略匹配,然后将其结果用于改善体素水平地图匹配,从而在具有较大收敛盆地的地图之间实现更有效,更准确的匹配。然后,根据马氏距离估算来自PMM算法的相对变换输出,然后使用相对熵滤波器更准确地整合地图差异,从而完成地图融合过程。使用从模拟和真实环境中收集的地图数据对所提出的方法进行了评估,结果验证了所提出的3D占用地图融合框架的准确性,效率以及对较大收敛盆地的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号