机译:雷达的人类活动分类:随机森林跟随迭代卷积神经网络的优化和鲁棒性
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;
School of Engineering, University of Glasgow, Glasgow, U.K.;
School of Engineering, University of Glasgow, Glasgow, U.K.;
School of Engineering, University of Glasgow, Glasgow, U.K.;
ETIS Laboratory (Information Processing and System Teams), Cergy-Pontoise University, Cergy-Pontoise, France;
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;
Feature extraction; Machine learning; Radar imaging; Sensors; Convolutional neural networks; Forestry;
机译:使用1-D卷积神经网络的基于雷达信号的人类活动分类
机译:评估对象识别对人类视觉视觉和鲁棒神经网络的鲁棒性
机译:基于多普勒雷达谱图和使用卷积神经网络的视觉图像的人员和鸟类检测和分类
机译:使用随机森林的冰山和船舶的合成孔径雷达图像分类优于卷积神经网络
机译:使用Gabor过滤器调查卷积神经网络的噪声稳健性
机译:随机森林分类器和深度卷积神经网络的集成用于癌症驱动程序突变的分类和生物分子建模
机译:通过SFS优化卷积神经网络的分层特征提取鲁棒活动形状模型,用于不变人类年龄分类