首页> 外文期刊>IEEE sensors journal >3D Hand Tracking With Head Mounted Gaze-Directed Camera
【24h】

3D Hand Tracking With Head Mounted Gaze-Directed Camera

机译:头戴式凝视指向摄像机的3D手部跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates hand tracking for everyday manipulation tasks using a gaze-directed camera, which is a wearable camera that actively directs the visual attention focus of the person who wears it. The proposed 3-D hand tracking algorithm is implemented as a submodule in the integrated vision system, which tracks the positions and the poses of the acting hands, the pose that the manipulated object, and the pose of the observing camera at the same time. Such system provides comprehensive data for learning predictive models of vision-guided manipulation that include the objects people are attending, the interaction of attention and reaching/grasping, and the segmentation of reaching and grasping using visual attention as evidence. The key contribution in this paper is the hand tracking algorithm in the ego view based on the interaction between the 2-D and 3-D hand model. The algorithm uses 2-D model tracking results to initialize and predict 3-D tracking, which reduces the number of particles and makes it possible for pose estimation by the proposed multilayer hierarchical sampling, which is the key techniques for estimating the state in high dimensional state space. Moreover, by incorporating the tracking result of the manipulated object, the proposed algorithm is capable of estimating the pose and position of the hand despite substantial occlusions caused by the manipulated object. We validate the proposed hand tracking algorithm using the whole integrated vision system in the context of kitchen tasks.
机译:本文研究了使用凝视定向相机进行日常操作任务的手部跟踪,该相机是一种可穿戴式相机,可以主动控制佩戴者的视觉注意力。所提出的3-D手部跟踪算法被实现为集成视觉系统中的子模块,该模块可同时跟踪活动手的位置和姿势,被操纵对象的姿势以及观察相机的姿势。这样的系统为学习视觉引导操纵的预测模型提供了全面的数据,这些模型包括人们正在参加的对象,注意力和到达/抓握的交互作用以及使用视觉注意作为证据的到达和抓握的细分。本文的主要贡献是基于2-D和3-D手模型之间相互作用的自我视图中的手跟踪算法。该算法使用2-D模型跟踪结果来初始化和预测3-D跟踪,这减少了粒子数量,并且可以通过提出的多层分层采样进行姿势估计,这是估计高维状态的关键技术状态空间。此外,通过合并被操纵对象的跟踪结果,尽管该被操纵对象造成了很大的遮挡,但所提出的算法仍能够估计手的姿势和位置。我们在厨房任务的背景下使用整个集成视觉系统验证了建议的手部跟踪算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号