首页> 外文期刊>Semiconductor science and technology >High C content Si/Si_(1-y)C_y heterostructures for n-type metal oxide semiconductor transistors
【24h】

High C content Si/Si_(1-y)C_y heterostructures for n-type metal oxide semiconductor transistors

机译:n型金属氧化物半导体晶体管的高C含量Si / Si_(1-y)C_y异质结构

获取原文
获取原文并翻译 | 示例
       

摘要

We have grown by reduced pressure-chemical vapour deposition Si/Si_(1-y)C_y/Si heterostructures for electrical purposes. The incorporation of substitutional carbon atoms into Si creates a carrier confinement in the channel region of metal oxide semiconductor (MOS) transistors. Indeed, tensile-strained Si_(1-y)C_y layers present a type II band alignment with Si, with a conduction band offset of the order of 60 meV per atomic% of substitutional carbon atoms. For small SiH_6 flows, all the incoming carbon atoms are incorporated into substitutional sites. At 550℃, when the SiCH_6 flow increases, the substitutional carbon concentration saturates at 1.44%. Meanwhile, the total carbon concentration C_T still increases, following a simple law: C_T/(1―C_T) = (0.88-0.92)(F(SiCH_6)/(F(SiH_4)). This is a sign that a growing number of C atoms incorporates into interstitial sites. The hydrogenated chemistry adopted does not enable us to achieve selectivity over SiO_2-masked wafers, but does not generate any adverse loading effect. We have integrated Si/Si_(1-y)C_y/Si stacks (which have been shown to be stable versus conventional gate oxidations and electrical activation anneals) into the channel region of ultra-short gate length (40 nm) nMOS transistors. Secondary ion mass spectrometry profiling has shown that C atoms segregate from the Si_(1-y)C_y layer into the Si cap and the SiO_2 gate, but also that they block the diffusion paths of B coming from the anti-punch through layer towards the gate, generating very retrograde doping profiles. The addition of C leads to a slight degradation of the electron mobility which seems to be linked to the presence of C atoms into interstitial sites. Finally, we have shown that using higher silane and methylsilane mass flows enables us to obtain higher substitutional C concentrations (max: 1.98%) in our Si_(1-y)C_y layers, with a good resulting structural quality.
机译:我们已经通过减压化学气相沉积法生长了用于电气目的的Si / Si_(1-y)C_y / Si异质结构。取代的碳原子掺入Si中会在金属氧化物半导体(MOS)晶体管的沟道区中形成载流子限制。实际上,拉伸应变的Si_(1-y)C_y层呈现出与Si的II型能带排列,每原子%的取代碳原子的导带偏移约为60 meV。对于较小的SiH_6流,所有进入的碳原子都被并入取代位点。在550℃时,当SiCH_6流量增加时,取代碳浓度达到1.44%饱和。同时,总碳浓度C_T仍然遵循简单的定律增加:C_T /(1–C_T)=(0.88-0.92)(F(SiCH_6)/(F(SiH_4))。 C原子进入间隙位置。采用的氢化化学方法无法使我们获得对SiO_2掩膜晶圆的选择性,但不会产生任何不利的负载效应。我们已经集成了Si / Si_(1-y)C_y / Si叠层(相对于传统的栅极氧化和电激活退火,在超短栅极长度(40 nm)nMOS晶体管的沟道区域中已证明是稳定的。二次离子质谱分析表明C原子从Si_(1-y C_y层进入Si帽和SiO_2栅极,但它们也阻止了B的抗穿通层向栅极的扩散路径,产生了非常逆行的掺杂轮廓,C的添加会导致B的轻微降解与迁移率有关的电子迁移率C原子进入间隙位置。最后,我们表明使用较高的硅烷和甲基硅烷质量流量可以使我们在Si_(1-y)C_y层中获得较高的取代C浓度(最大值:1.98%),并具有良好的结构质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号