首页> 外文期刊>Semiconductor science and technology >Gettering in silicon-on-insulator wafers: experimental studies and modelling
【24h】

Gettering in silicon-on-insulator wafers: experimental studies and modelling

机译:绝缘体上硅晶片中的吸气剂:实验研究和建模

获取原文
获取原文并翻译 | 示例
       

摘要

Buried oxide, which separates the device area from the substrate in silicon-on-insulator (SOI) wafers, forms a diffusion barrier for transition metals in silicon. The impact of this barrier on the efficiency of traditional gettering techniques for iron and copper is evaluated using computer modelling. Several parameters essential for the modelling, such as the diffusivity of iron in SiO_2 and the segregation coefficient of iron and copper in SiO_2, are verified experimentally. It is found that all available data for the diffusivity of iron in SiO_2 (including data points from the literature and our own value of 1.4 x 10~(-13) cm s~(-2) at 1100℃) could be fitted by the equation D(Fe in SiO_2) = 2.2 x 10~(-2) x exp(-3.05 eV/k_BT) (cm~2 s~(-1)). The solubility of iron in silicon dioxide was found to be 4.5 times to 5.5 times less than that in silicon at temperatures from 1020℃ to 1100℃, which indicates that iron does not segregate in SiO_2. The solubility of Cu in silicon dioxide was determined to be half of that in silicon at 1150℃ and 3.3 times higher than in silicon at 690℃. Modelling of gettering using these parameters revealed that buried oxide prevents iron from diffusing to gettering sites in the substrate at typical processing temperatures, thus rendering the substrate gettering techniques inefficient. On the other hand, the diffusion barrier protects the device area from contamination from the backside of the wafer. Copper has sufficiently high diffusivity in SiO_2 to diffuse through the buried oxide within a short time at 1000℃; however, it may be difficult to remove copper from the device area because heavily doped areas of the devices could provide competitive gettering sites for copper. Possible gettering strategies for the SOI wafers are discussed.
机译:掩埋氧化物将绝缘体上硅(SOI)晶圆中的器件区域与衬底分隔开,形成了硅中过渡金属的扩散阻挡层。使用计算机建模可以评估此​​障碍对铁和铜的传统吸气技术效率的影响。实验验证了建模中必不可少的几个参数,例如铁在SiO_2中的扩散率以及铁和铜在SiO_2中的偏析系数。发现所有可用的铁在SiO_2中的扩散率数据(包括文献中的数据点和我们自己在1100℃下的1.4 x 10〜(-13)cm s〜(-2)值)都可以通过拟合得到。方程D(SiO_2中的Fe)= 2.2 x 10〜(-2)x exp(-3.05 eV / k_BT)(cm〜2 s〜(-1))。发现铁在二氧化硅中的溶解度在1020℃至1100℃的温度下比在硅中的溶解度低4.5到5.5倍,这表明铁不会在SiO_2中偏析。经测定,Cu在二氧化硅中的溶解度是1150℃时在硅中的一半,是690℃时在硅中的3.3倍。使用这些参数对吸气剂进行建模后发现,在典型的加工温度下,埋入的氧化物可防止铁扩散至基材中的吸气部位,从而使基材的吸杂技术效率低下。另一方面,扩散阻挡层保护器件区域免受晶片背面的污染。铜在SiO_2中具有足够高的扩散率,可以在1000℃的短时间内扩散通过埋入的氧化物。但是,可能很难从器件区域去除铜,因为器件的重掺杂区可能会为铜提供竞争性的吸气部位。讨论了SOI晶圆可能的吸气策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号