首页> 外文期刊>Semiconductor science and technology >Disilane-based cyclic deposition/etch of Si, Si:P and Si_(1-y)C_y: P layers: II. The CDE features
【24h】

Disilane-based cyclic deposition/etch of Si, Si:P and Si_(1-y)C_y: P layers: II. The CDE features

机译:Si,Si:P和Si_(1-y)C_y的基于乙硅烷的循环沉积/蚀刻:P层:II。 CDE功能

获取原文
获取原文并翻译 | 示例
           

摘要

We have developed innovative cyclic deposition/etch (CDE) processes in order to grow Si, Si:P and Si_(1-y)C_y:P raised sources and drains (RSDs) on patterned wafers. A Si_2H_6 + PH_3 + SiCH_6 chemistry was used for the 550 ℃ growth steps. Meanwhile, the selective etch of poly-crystalline layers on dielectrics was conducted at 600 ℃ with HC1 + GeH_4. We have first studied the specifics of those isobaric (P = 20 Torr) CDE processes on bulk, blanket Si(0 0 1) substrates. CDE-grown Si, Si:P and Si_(1-y)C_y: P) layers were high crystalline quality and smooth, although these also contained 2-3% of Ge. Due to the preferential incorporation of P atoms in the lattice, the 'apparent' substitutional C content was higher for intrinsic than for in situ phosphorous-doped layers (1.29% versus 1.17% and 1.59% versus 1.47% for the two SiCH_6 mass-flows probed). The atomic P concentration in our Si_(1-y)C_y:P layers was close to 2.6 × 10~(20) cm~(-3), versus 2.1 × 10~(20) cm~(-3) in the Si:P layers. The Si, Si:P and Si_(1-y)C_y(:P) thickness deposited in each CDE cycle decreased linearly as the HCl+GeH_4 etch time increased, with the 'equivalent' etch rate (i.e. the slope of this linear decrease) being lower in intrinsic than in in situ doped layers. Higher C contents resulted in lower 'equivalent' etch rates. A CDE strategy suppressed the surface roughening occurring for high C content, several tens of nm thick Si_(1-y)C_y: P layers grown in one step only. We have then calibrated, for 19-23 nm thick CDE-grown Si, Si:P and Si_(1-y)C_y:P RSDs, the HC1 + GeH_4 etch time per step necessary to achieve full selectivity on patterned silicon-on-insulator substrates. Selectivity was obtained for intrinsic Si once 180 s etch steps were used. Longer etch times were needed for Si:P and especially Si_(1-y)C_y: P (270 and 315 s/CDE cycle, respectively). The resulting S/D areas were rather smooth and slightly facetted, but the un-protected poly-Si layers sitting on top of the gate stacks were completely removed with these etch times.
机译:我们已经开发出创新的循环沉积/蚀刻(CDE)工艺,以在图案化晶片上生长Si,Si:P和Si_(1-y)C_y:P凸起的源极和漏极(RSD)。 550℃的生长步骤使用了Si_2H_6 + PH_3 + SiCH_6化学物质。同时,在600℃下用HCl + GeH_4对电介质上的多晶硅层进行选择性刻蚀。我们首先研究了在块状硅(0 0 1)衬底上的等压(P = 20 Torr)CDE工艺的细节。 CDE生长的Si,Si:P和Si_(1-y)C_y:P)层具有较高的晶体质量和光滑度,尽管它们也含有2-3%的Ge。由于优先将P原子掺入晶格中,本征的“表观”取代C含量高于原位磷掺杂层(两个SiCH_6质量流的1.29%对1.17%和1.59%对1.47%)探查)。 Si_(1-y)C_y:P层中的原子P浓度接近2.6×10〜(20)cm〜(-3),而Si中为2.1×10〜(20)cm〜(-3) :P层。随着HCl + GeH_4蚀刻时间的增加,在每个CDE循环中沉积的Si,Si:P和Si_(1-y)C_y(:P)厚度呈线性减小,蚀刻速率“等效”(即线性减小的斜率) )本征比原位掺杂层低。较高的C含量导致较低的“等效”蚀刻速率。 CDE策略抑制了高C含量,数十纳米厚的Si_(1-y)C_y:P层仅一步生长的情况下发生的表面粗糙化。然后,我们针对19-23 nm厚的CDE生长的Si,Si:P和Si_(1-y)C_y:P RSD进行了校准,以实现在图案化硅上硅上实现完全选择性所需的每步HC1 + GeH_4蚀刻时间。绝缘体基板。一旦使用180 s蚀刻步骤,就可以获得本征Si的选择性。 Si:P,尤其是Si_(1-y)C_y:P需要更长的蚀刻时间(分别为270和315 s / CDE循环)。所得的S / D区域相当光滑且略有小平面,但是在这些刻蚀时间中,位于栅叠层顶部的未保护的多晶硅层已被完全去除。

著录项

  • 来源
    《Semiconductor science and technology》 |2013年第2期|19.1-19.11|共11页
  • 作者单位

    CEA, LETI, Minatec Campus-17, Avenue des Martyrs 38054 Grenoble Cedex 9, France;

    CEA, LETI, Minatec Campus-17, Avenue des Martyrs 38054 Grenoble Cedex 9, France;

    CEA, LETI, Minatec Campus-17, Avenue des Martyrs 38054 Grenoble Cedex 9, France;

    CEA, LETI, Minatec Campus-17, Avenue des Martyrs 38054 Grenoble Cedex 9, France;

    CEA, LETI, Minatec Campus-17, Avenue des Martyrs 38054 Grenoble Cedex 9, France;

    CEA, LETI, Minatec Campus-17, Avenue des Martyrs 38054 Grenoble Cedex 9, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号