首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Robust Tracking in A Camera Network: A Multi-Objective Optimization Framework
【24h】

Robust Tracking in A Camera Network: A Multi-Objective Optimization Framework

机译:摄像机网络中的稳健跟踪:多目标优化框架

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of tracking multiple people in a network of nonoverlapping cameras. This introduces certain challenges that are unique to this particular application scenario, in addition to existing challenges in tracking like pose and illumination variations, occlusion, clutter and sensor noise. For this purpose, we propose a novel multi-objective optimization framework by combining short term feature correspondences across the cameras with long-term feature dependency models. The overall solution strategy involves adapting the similarities between features observed at different cameras based on the long-term models and finding the stochastically optimal path for each person. For modeling the long-term interdependence of the features over space and time, we propose a novel method based on discriminant analysis models. The entire process allows us to adaptively evolve the feature correspondences by observing the system performance over a time window, and correct for errors in the similarity estimations. We show results on data collected by two large camera networks. These experiments prove that incorporation of the long-term models enable us to hold tracks of objects over extended periods of time, including situations where there are large ldquoblindrdquo areas. The proposed approach is implemented by distributing the processing over the entire network.
机译:我们解决了在不重叠的摄像机网络中跟踪多个人的问题。除了在跟踪方面的现有挑战(例如姿势和照明变化,遮挡,杂波和传感器噪声)外,这还带来了特定应用场景所特有的某些挑战。为此,我们提出了一种新颖的多目标优化框架,该框架通过将摄像机之间的短期特征对应关系与长期特征依赖模型相结合。整体解决方案策略包括根据长期模型调整在不同相机上观察到的特征之间的相似度,并找到每个人的随机最优路径。为了建模特征在空间和时间上的长期相互依赖关系,我们提出了一种基于判别分析模型的新颖方法。整个过程使我们能够通过观察时间范围内的系统性能来自适应地发展特征对应关系,并纠正相似性估计中的错误。我们显示了两个大型摄像机网络收集的数据结果。这些实验证明,长期模型的合并使我们能够长时间跟踪对象,包括存在大盲区的情况。通过在整个网络上分布处理过程来实现所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号