首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Maximum Orthogonal Subspace Projection Approach to Estimating the Number of Spectral Signal Sources in Hyperspectral Imagery
【24h】

Maximum Orthogonal Subspace Projection Approach to Estimating the Number of Spectral Signal Sources in Hyperspectral Imagery

机译:最大正交子空间投影方法估计高光谱图像中光谱信号源的数量

获取原文
获取原文并翻译 | 示例

摘要

Estimating the number of spectral signal sources, denoted by $p$, in hyperspectral imagery is very challenging due to the fact that many unknown material substances can be uncovered by very high spectral resolution hyperspectral sensors. This paper investigates a recent approach, called maximum orthogonal complement algorithm (MOCA) developed by Kuybeda for estimating the rank of a rare vector space in a high-dimensional noisy data space which was essentially derived from the automatic target generation process (ATGP) developed by Ren and Chang. By appropriately interpreting the MOCA in context of the ATGP, a potentially useful technique, called maximum orthogonal subspace projection (MOSP) can be further developed where a stopping rule for the ATGP provided by MOSP turns out to be equivalent to a procedure for estimating the rank of a rare vector space by the MOCA and the number of targets determined by the MOSP to generate is the desired value of the parameter $p$. Furthermore, a Neyman-Pearson detector version of MOCA, referred to as ATGP/NPD can be also derived where the MOCA can be considered as a Bayes detector. Surprisingly, the ATGP/NPD has a very similar design rationale to that of a technique, called Harsanyi-Farrand-Chang method that was developed to estimate the virtual dimensionality (VD) where the ATGP/NPD provides a link between MOCA and VD.
机译:由于存在很高的光谱分辨率高光谱传感器可以发现许多未知物质的事实,因此在高光谱图像中估算由$ p $表示的光谱信号源的数量非常具有挑战性。本文研究了Kuybeda最近开发的一种称为最大正交互补算法(MOCA)的方法,该方法用于估计高维噪声数据空间中稀有向量空间的秩,该方法本质上是从由其开发的自动目标生成过程(ATGP)得出的任和张。通过在ATGP的上下文中适当地解释MOCA,可以进一步开发一种潜在有用的技术,称为最大正交子空间投影(MOSP),其中MOSP提供的ATGP的停止规则等同于估计等级的过程MOCA对稀疏向量空间的估计,由MOSP确定要生成的目标数目是参数$ p $的期望值。此外,还可以导出MOCA的Neyman-Pearson检测器版本,称为ATGP / NPD,其中MOCA可被视为贝叶斯检测器。出乎意料的是,ATGP / NPD具有与一种称为Harsanyi-Farrand-Chang方法的技术非常相似的设计原理,该技术被开发用于估算虚拟尺寸(VD),其中ATGP / NPD提供了MOCA和VD之间的链接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号