首页> 外文会议>Satellite data compression, communications, and processing VI >Maximum Orthogonal Subspace Projection Approach to Estimating the Number of Spectral Signal Sources in Hyperspectral Imagery
【24h】

Maximum Orthogonal Subspace Projection Approach to Estimating the Number of Spectral Signal Sources in Hyperspectral Imagery

机译:最大正交子空间投影方法估计高光谱图像中光谱信号源的数量

获取原文
获取原文并翻译 | 示例

摘要

Estimating the number of spectral signal sources, denoted by p, in hyperspectral imagery is very challenging due to the fact that many unknown material substances can be uncovered by very high spectral resolution hyperspectral sensors. This paper investigates a recent approach, called maximum orthogonal complement algorithm (MOCA), for this purpose. The MOCA was originally developed by Kuybeda et al. for estimating the rank of a rare vector space in a high-dimensional noisy data space. Interestingly, the idea of the MOCA is essentially derived from the automatic target generation process (ATGP) developed by Ren and Chang. By appropriately interpreting the MOCA in context of the ATGP a potentially useful technique, called maximum orthogonal subspace projection (MOSP) can be further developed where determining a stopping rule for the ATGP turns out to be equivalent to estimating the rank of a rare vector space by the MOCA and the number of targets determined by the stopping rule for the ATGP to generate is the desired value of the parameter p. Furthermore, a Neyman-Pearson detector version of MOCA, NPD-MOCA can be also derived by the MOSP as opposed to the MOCA considered as a Bayes detector. Surprisingly, the MOCA-NPD has very similar design rationale to that of a technique referred to as Harsanyi-Farrand-Chang method that was developed to estimate the virtual dimensionality (VD) which is defined as the p.
机译:由于存在非常高的光谱分辨率高光谱传感器可以发现许多未知物质的事实,因此在高光谱图像中估计由p表示的光谱信号源的数量非常具有挑战性。为此,本文研究了一种称为最大正交互补算法(MOCA)的最新方法。 MOCA最初是由Kuybeda等人开发的。用于估计高维噪声数据空间中稀有向量空间的等级。有趣的是,MOCA的思想本质上是由Ren和Chang开发的自动目标生成过程(ATGP)衍生的。通过在ATGP上下文中适当解释MOCA,可以进一步开发一种潜在有用的技术,称为最大正交子空间投影(MOSP),其中确定ATGP的停止规则等同于通过以下方法估计稀有向量空间的秩: MOCA和由ATGP停止规则确定的目标数量是参数p的期望值。此外,与被认为是贝叶斯检测器的MOCA相反,MOSP的Neyman-Pearson检测器版本NPD-MOCA也可以由MOSP导出。出人意料的是,MOCA-NPD具有与被称为Harsanyi-Farrand-Chang方法的技术非常相似的设计原理,该技术被开发用来估计定义为p的虚拟维数(VD)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号