首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Mis-Information Removal in Social Networks: Constrained Estimation on Dynamic Directed Acyclic Graphs
【24h】

Mis-Information Removal in Social Networks: Constrained Estimation on Dynamic Directed Acyclic Graphs

机译:社交网络中错误信息的去除:动态有向无环图的约束估计

获取原文
获取原文并翻译 | 示例

摘要

A key issue in the multi agent state estimation presented in social networks is the inadvertent multiple re-use of data also known as mis-information propagation or data incest. We formulate this mis-information propagation in a graph theoretic setting and give a necessary and sufficient conditions on the topology of information flow network so that the underlying state can be estimated optimally. A distributed fusion algorithm is proposed so that the social network has incest free estimates. We also provide a discussion on mis-information removal algorithm for information exchange protocols where people learn from actions of others in a social network. A sub-optimal algorithm is also presented when the information flow graph is not known. Numerical examples are provided to illustrate the performance of the proposed optimal and sub-optimal algorithms.
机译:社交网络中出现的多主体状态估计中的一个关键问题是对数据的无意多次重用,也称为错误信息传播或数据乱伦。我们在图论的理论环境中公式化了这种错误信息的传播,并在信息流网络的拓扑结构上给出了充要条件,以便可以对潜在状态进行最佳估计。提出了一种分布式融合算法,使社交网络具有无乱伦的估计。我们还提供了有关信息交换协议中错误信息消除算法的讨论,人们可以从社交网络中其他人的行为中学到东西。当信息流图未知时,也会提出次优算法。提供了数值示例来说明所提出的最佳算法和次优算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号