首页> 外文期刊>Signal Processing, IEEE Transactions on >Monte Carlo Optimization of Decentralized Estimation Networks Over Directed Acyclic Graphs Under Communication Constraints
【24h】

Monte Carlo Optimization of Decentralized Estimation Networks Over Directed Acyclic Graphs Under Communication Constraints

机译:通信约束下有向无环图的分散估计网络的蒙特卡洛优化

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the vision of sensor networks, we consider decentralized estimation networks over bandwidth-limited communication links, and are particularly interested in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We employ a class of in-network processing strategies that admits directed acyclic graph representations and yields a tractable Bayesian risk that comprises the cost of communications and estimation error penalty. This perspective captures a broad range of possibilities for processing under network constraints and enables a rigorous design problem in the form of constrained optimization. A similar scheme and the structures exhibited by the solutions have been previously studied in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization scheme involves integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both the in-network processing strategies and their optimization. The proposed Monte Carlo optimization procedure operates in a scalable and efficient fashion and, owing to the nonparametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk.
机译:出于传感器网络的愿景,我们考虑了带宽受限的通信链路上的分散式估算网络,并且尤其对估算精度与由于能耗等因素导致的通信成本之间的折衷感兴趣。我们采用了一类网络内处理策略,该策略接受有向无环图表示并产生可观的贝叶斯风险,其中包括通信成本和估计错误代价。这种观点捕获了在网络约束下进行处理的广泛可能性,并以约束优化的形式提出了严格的设计问题。先前已经在分散检测的背景下研究了类似的方案和解决方案展示的结构。在合理的假设下,可以以消息传递方式进行优化。我们采用此框架进行估算,但是,相应的优化方案涉及积分运算符,这些运算符通常无法精确评估。我们使用蒙特卡洛方法开发了一个近似框架,并针对网络内处理策略及其优化获得了粒子表示形式和近似计算方案。拟议的蒙特卡洛优化程序以可扩展且高效的方式运行,并且由于非参数性质,如果可以从边际生成样本,则可以针对任何分布生成结果。另外,随着通信变得更加昂贵,通过参数化贝叶斯风险,该方法会渐近地表现出估计精度的适度下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号