首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Space-Time Signal Processing for Distributed Pattern Detection in Sensor Networks
【24h】

Space-Time Signal Processing for Distributed Pattern Detection in Sensor Networks

机译:传感器网络中分布式模式检测的时空信号处理

获取原文
获取原文并翻译 | 示例

摘要

A theory and algorithm for detecting and classifying weak, distributed patterns in network data is presented. The patterns we consider are anomalous temporal correlations between signals recorded at sensor nodes in a network. We use robust matrix completion and second order analysis to detect distributed patterns that are not discernible at the level of individual sensors. When viewed independently, the data at each node cannot provide a definitive determination of the underlying pattern, but when fused with data from across the network the relevant patterns emerge. We are specifically interested in detecting weak patterns in computer networks where the nodes (terminals, routers, servers, etc.) are sensors that provide measurements (of packet rates, user activity, central processing unit usage, etc.). The approach is applicable to many other types of sensor networks including wireless networks, mobile sensor networks, and social networks where correlated phenomena are of interest.
机译:提出了一种检测和分类网络数据中的弱分布模式的理论和算法。我们考虑的模式是网络中传感器节点处记录的信号之间的异常时间相关性。我们使用鲁棒的矩阵完成度和二阶分析来检测在单个传感器级别无法识别的分布式模式。当单独查看时,每个节点上的数据不能提供对底层模式的确定确定,但是当与来自整个网络的数据融合时,就会出现相关的模式。我们特别感兴趣的是检测计算机网络中的弱模式,在这些网络中,节点(终端,路由器,服务器等)是提供测量(数据包速率,用户活动,中央处理器使用情况等)的传感器。该方法适用于许多其他类型的传感器网络,包括感兴趣的相关现象的无线网络,移动传感器网络和社交网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号