首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Detection of Anomalous Trajectory Patterns in Target Tracking via Stochastic Context-Free Grammars and Reciprocal Process Models
【24h】

Detection of Anomalous Trajectory Patterns in Target Tracking via Stochastic Context-Free Grammars and Reciprocal Process Models

机译:通过随机上下文无关文法和倒数过程模型检测目标跟踪中的异常轨迹模式

获取原文
获取原文并翻译 | 示例

摘要

On meta-level time scales, anomalous trajectories can signify target intent through their shape and eventual destination. Such trajectories exhibit complex spatial patterns and have well defined destinations with long-range dependencies implying that Markov (random-walk) models are unsuitable. How can estimated target tracks be used to detect anomalous trajectories such as circling a building or going past a sequence of checkpoints? This paper develops context-free grammar models and reciprocal Markov models (one dimensional Markov random fields) for modeling spatial trajectories with a known end point. The intent of a target is assumed to be a function of the shape of the trajectory it follows and its intended destination. The stochastic grammar models developed are concerned with trajectory shape classification while the reciprocal Markov models are used for destination prediction. Towards this goal, Bayesian signal processing algorithms with polynomial complexity are presented. The versatility of such models is illustrated with tracking applications in surveillance.
机译:在元级时间尺度上,异常轨迹可以通过其形状和最终目的地来表示目标意图。这样的轨迹表现出复杂的空间模式,并且具有明确的目的地,并且具有远距离依赖性,这意味着马尔可夫(随机游走)模型不合适。估计的目标轨迹如何用于检测异常轨迹,例如环绕建筑物或经过一系列检查站?本文开发了无上下文的语法模型和互惠的马尔可夫模型(一维马尔可夫随机域),用于对具有已知终点的空间轨迹进行建模。假定目标的意图是其遵循的轨迹形状及其预期目标的函数。所开发的随机语法模型与轨迹形状分类有关,而互惠的马尔可夫模型则用于目的地预测。为此,提出了具有多项式复杂度的贝叶斯信号处理算法。跟踪中的跟踪应用说明了此类模型的多功能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号