首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Graph-Theoretic Distributed Inference in Social Networks
【24h】

Graph-Theoretic Distributed Inference in Social Networks

机译:社会网络中的图论分布式推理

获取原文
获取原文并翻译 | 示例

摘要

We consider distributed inference in social networks where a phenomenon of interest evolves over a given social interaction graph, referred to as the social digraph. We assume that a network of agents monitors certain nodes in the social digraph and the agents rely on inter-agent communication to perform inference. The key contributions include: (i) a novel construction of the distributed estimator and distributed observability from the first principles; (ii) a graph-theoretic agent classification that establishes the importance and role of each agent towards inference; (iii) characterizing the necessary conditions, based on the classification in (ii), on the agent network to achieve distributed observability. Our results are based on structured systems theory and are applicable to any parameter choice of the underlying system matrix as long as the social digraph remains fixed. In other words, any social phenomena that evolves (linearly) over a structure-invariant social digraph may be considered—we refer to such systems as Liner Structure-Invariant (LSI). The aforementioned contributions, (i)–(iii), thus, only require the knowledge of the social digraph (topology) and are independent of the social phenomena. We show the applicability of the results to several real-wold social networks, i.e. social influence among monks, networks of political blogs and books, and a co-authorship graph.
机译:我们考虑社交网络中的分布式推理,在这种社交网络中,兴趣现象会在给定的社交互动图(称为社交图)上演变。我们假设代理人网络监视社会图中的某些节点,并且代理人依赖于代理人之间的通信来执行推理。主要贡献包括:(i)分布式估计器的新颖构造和第一原理的分布式可观察性; (ii)图论理论主体分类,该分类确定了每个主体对推理的重要性和作用; (iii)根据(ii)中的分类,在代理商网络上描述实现分布式可观察性的必要条件。我们的结果基于结构化系统理论,并且只要社会图保持固定,即可应用于基础系统矩阵的任何参数选择。换句话说,可以考虑在结构不变的社会图上(线性地)发展的任何社会现象,我们将这类系统称为线性结构不变(LSI)。因此,上述贡献(i)-(iii)仅需要了解社会图(拓扑),而与社会现象无关。我们展示了该结果对几个真实世界的社交网络的适用性,即僧侣之间的社会影响力,政治博客和书籍的网络以及共同作者图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号