首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Joint Sparsity in SAR Tomography for Urban Mapping
【24h】

Joint Sparsity in SAR Tomography for Urban Mapping

机译:SAR层析成像中的稀疏性用于城市制图

获取原文
获取原文并翻译 | 示例

摘要

With meter-resolution images delivered by modern synthetic aperture radar (SAR) satellites satellites like TerraSAR-X and TanDEM-X, it is now possible to map urban areas from space in very high level of detail using advanced interferometric techniques such as persistent scatterer interferometry and tomographic SAR inversion (TomoSAR), whereas these multi-pass techniques are based on a great number of images. We aim at precise TomoSAR reconstruction while significantly reducing the required number of images by incorporating building a priori knowledge to the estimation. In the paper, we propose a novel workflow that marries the freely available geographic information systems (GIS) data (i.e., 2-D building footprints) and the joint sparsity concept for TomoSAR inversion. Experiments on bistatic TanDEM-X data stacks demonstrate the great potential of the proposed approach, e.g., highly accurate tomographic reconstruction is achieved using six interferograms only.
机译:借助TerraSAR-X和TanDEM-X等现代合成孔径雷达(SAR)卫星提供的米分辨率图像,现在可以使用诸如持久散射散射干涉法之类的先进干涉技术从太空中以非常高的细节绘制城市区域图和断层SAR反演(TomoSAR),而这些多程技术则基于大量图像。我们致力于精确的TomoSAR重建,同时通过将先验知识整合到估计中来显着减少所需的图像数量。在本文中,我们提出了一种新颖的工作流程,该工作流程将免费提供的地理信息系统(GIS)数据(即2-D建筑占地面积)与TomoSAR反演的联合稀疏性概念相结合。在双基地TanDEM-X数据堆栈上进行的实验证明了该方法的巨大潜力,例如仅使用六个干涉图即可实现高度精确的层析成像重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号