首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Cooling-Aware Energy and Workload Management in Data Centers via Stochastic Optimization
【24h】

Cooling-Aware Energy and Workload Management in Data Centers via Stochastic Optimization

机译:通过随机优化实现数据中心的制冷意识能源和工作量管理

获取原文
获取原文并翻译 | 示例

摘要

While the quest of end users for fast and convenient Internet services grows steadily, energy-hungry data centers correspondingly expand in both numbers and scale - a fact that raises global warming and climate change concerns. In addition, high penetration of renewables, development of energy-efficient cooling facilities, and flexibility of distributed storage units, all call for a system-wide energy and workload management policy for future sustainable data centers. As implementing offline management policies is practically infeasible due to complexity and the lack of future information, real-time management schemes are considered here under a systematic framework. Leveraging stochastic optimization tools, a unified management approach is proposed allowing data centers to adaptively respond to intermittent availability of renewables, variability of cooling efficiency, information technology (IT) workload shift, and energy price fluctuations under long-term quality-of-service (QoS) requirements. Meanwhile, it is rigorously established that when storage devices have sufficiently high capacity, or, the difference between electricity purchase and selling prices is small, the proposed algorithm yields a feasible and near-optimal management strategy without knowing the distributions of the independently and identically distributed (i.i.d.) workload, renewable, and electricity price processes. Numerical results further demonstrate that the proposed algorithm works well not only for i.i.d. processes, but also in real-data scenarios, where the underlying randomness is highly correlated over time.
机译:尽管最终用户对快速,便捷的Internet服务的需求稳步增长,但能源消耗巨大的数据中心的数量和规模却相应增加了,这一事实引起了全球变暖和气候变化的担忧。此外,可再生能源的高度普及,高能效冷却设备的开发以及分布式存储单元的灵活性,都要求为未来的可持续数据中心制定全系统的能源和工作量管理政策。由于复杂性和未来信息的缺乏,实施离线管理策略实际上是不可行的,因此在系统的框架下考虑了实时管理方案。利用随机优化工具,提出了一种统一的管理方法,该方法允许数据中心自适应地响应间歇性可再生能源的可用性,冷却效率的变化,信息技术(IT)工作量变化以及长期服务质量下的能源价格波动( QoS)要求。同时,严格建立了当存储设备具有足够大的容量,或者购电价格与购电价格之间的差异较小时,所提出的算法在不知道独立且均匀分布的分布的情况下产生了可行且接近最优的管理策略。 (iid)工作量,可再生能源和电价过程。数值结果进一步证明了该算法不仅适用于i.d.流程,以及实际数据场景中,其中基础随机性随时间高度相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号